Properties

Label 2-93600-1.1-c1-0-43
Degree $2$
Conductor $93600$
Sign $-1$
Analytic cond. $747.399$
Root an. cond. $27.3386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 4·11-s − 13-s + 2·17-s − 4·19-s − 6·29-s + 4·31-s − 6·37-s − 10·41-s + 8·43-s − 12·47-s + 9·49-s − 10·53-s + 12·59-s + 6·61-s + 4·67-s − 4·71-s − 2·73-s + 16·77-s + 8·79-s + 12·83-s + 6·89-s + 4·91-s − 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 1.51·7-s − 1.20·11-s − 0.277·13-s + 0.485·17-s − 0.917·19-s − 1.11·29-s + 0.718·31-s − 0.986·37-s − 1.56·41-s + 1.21·43-s − 1.75·47-s + 9/7·49-s − 1.37·53-s + 1.56·59-s + 0.768·61-s + 0.488·67-s − 0.474·71-s − 0.234·73-s + 1.82·77-s + 0.900·79-s + 1.31·83-s + 0.635·89-s + 0.419·91-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 93600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(93600\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(747.399\)
Root analytic conductor: \(27.3386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{93600} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 93600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.98837850535429, −13.36219745927324, −13.10995089187738, −12.68937875840744, −12.26308057572272, −11.68325336581917, −11.00296606522478, −10.54951983315967, −10.00898688385752, −9.761733873676172, −9.204927462411457, −8.476788005385784, −8.145111052487316, −7.449203108906326, −6.963670480654322, −6.418282391361487, −6.005561450779578, −5.258468944783211, −4.949737438155729, −4.067682772847809, −3.435214863408161, −3.090020625770401, −2.351640184563716, −1.800712386484102, −0.6030650507163537, 0, 0.6030650507163537, 1.800712386484102, 2.351640184563716, 3.090020625770401, 3.435214863408161, 4.067682772847809, 4.949737438155729, 5.258468944783211, 6.005561450779578, 6.418282391361487, 6.963670480654322, 7.449203108906326, 8.145111052487316, 8.476788005385784, 9.204927462411457, 9.761733873676172, 10.00898688385752, 10.54951983315967, 11.00296606522478, 11.68325336581917, 12.26308057572272, 12.68937875840744, 13.10995089187738, 13.36219745927324, 13.98837850535429

Graph of the $Z$-function along the critical line