Properties

Label 2-9360-1.1-c1-0-69
Degree $2$
Conductor $9360$
Sign $-1$
Analytic cond. $74.7399$
Root an. cond. $8.64522$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·7-s − 11-s − 13-s + 17-s + 2·19-s − 3·23-s + 25-s + 2·29-s + 6·31-s + 3·35-s + 11·37-s + 5·41-s − 4·43-s − 10·47-s + 2·49-s − 11·53-s + 55-s + 8·59-s + 13·61-s + 65-s − 12·67-s − 5·71-s + 10·73-s + 3·77-s + 3·79-s − 12·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.13·7-s − 0.301·11-s − 0.277·13-s + 0.242·17-s + 0.458·19-s − 0.625·23-s + 1/5·25-s + 0.371·29-s + 1.07·31-s + 0.507·35-s + 1.80·37-s + 0.780·41-s − 0.609·43-s − 1.45·47-s + 2/7·49-s − 1.51·53-s + 0.134·55-s + 1.04·59-s + 1.66·61-s + 0.124·65-s − 1.46·67-s − 0.593·71-s + 1.17·73-s + 0.341·77-s + 0.337·79-s − 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9360\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(74.7399\)
Root analytic conductor: \(8.64522\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9360,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 + T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.52145831062611022512156763785, −6.40778205427448072726373472276, −6.33859290798451640150635320062, −5.25582994582197556218619947582, −4.56986905156167203274964735994, −3.74101496794116888068356638855, −3.05934827518297177748040359480, −2.39612342515546914051064552815, −1.04685289311080159809055883415, 0, 1.04685289311080159809055883415, 2.39612342515546914051064552815, 3.05934827518297177748040359480, 3.74101496794116888068356638855, 4.56986905156167203274964735994, 5.25582994582197556218619947582, 6.33859290798451640150635320062, 6.40778205427448072726373472276, 7.52145831062611022512156763785

Graph of the $Z$-function along the critical line