Properties

Label 2-9360-1.1-c1-0-61
Degree $2$
Conductor $9360$
Sign $-1$
Analytic cond. $74.7399$
Root an. cond. $8.64522$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·7-s − 5·11-s − 13-s − 3·17-s + 8·19-s + 3·23-s + 25-s − 2·29-s + 10·31-s + 3·35-s − 3·37-s + 3·41-s + 10·43-s + 6·47-s + 2·49-s + 5·53-s + 5·55-s − 4·59-s − 7·61-s + 65-s − 12·67-s − 5·71-s + 2·73-s + 15·77-s + 13·79-s + 12·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.13·7-s − 1.50·11-s − 0.277·13-s − 0.727·17-s + 1.83·19-s + 0.625·23-s + 1/5·25-s − 0.371·29-s + 1.79·31-s + 0.507·35-s − 0.493·37-s + 0.468·41-s + 1.52·43-s + 0.875·47-s + 2/7·49-s + 0.686·53-s + 0.674·55-s − 0.520·59-s − 0.896·61-s + 0.124·65-s − 1.46·67-s − 0.593·71-s + 0.234·73-s + 1.70·77-s + 1.46·79-s + 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9360\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(74.7399\)
Root analytic conductor: \(8.64522\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9360,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 + T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.62295398423809722416148191494, −6.73318962792036887738672739379, −6.00920692302895758664849327025, −5.27281214555356199649075773159, −4.65977087241876803139635842891, −3.73190666639864770142781372908, −2.87194243113059632150745464072, −2.58267220446043774760283782667, −0.994673613006434617934448839279, 0, 0.994673613006434617934448839279, 2.58267220446043774760283782667, 2.87194243113059632150745464072, 3.73190666639864770142781372908, 4.65977087241876803139635842891, 5.27281214555356199649075773159, 6.00920692302895758664849327025, 6.73318962792036887738672739379, 7.62295398423809722416148191494

Graph of the $Z$-function along the critical line