Properties

Label 2-9360-1.1-c1-0-53
Degree $2$
Conductor $9360$
Sign $1$
Analytic cond. $74.7399$
Root an. cond. $8.64522$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·7-s + 2·11-s − 13-s − 2·17-s + 6·19-s − 6·23-s + 25-s − 2·29-s + 10·31-s + 4·35-s − 2·37-s + 6·41-s − 10·43-s + 4·47-s + 9·49-s − 2·53-s + 2·55-s + 6·59-s + 2·61-s − 65-s + 4·67-s + 6·71-s − 6·73-s + 8·77-s + 12·79-s − 16·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.51·7-s + 0.603·11-s − 0.277·13-s − 0.485·17-s + 1.37·19-s − 1.25·23-s + 1/5·25-s − 0.371·29-s + 1.79·31-s + 0.676·35-s − 0.328·37-s + 0.937·41-s − 1.52·43-s + 0.583·47-s + 9/7·49-s − 0.274·53-s + 0.269·55-s + 0.781·59-s + 0.256·61-s − 0.124·65-s + 0.488·67-s + 0.712·71-s − 0.702·73-s + 0.911·77-s + 1.35·79-s − 1.75·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9360\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(74.7399\)
Root analytic conductor: \(8.64522\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.107791900\)
\(L(\frac12)\) \(\approx\) \(3.107791900\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74626382643602401855892436666, −7.10424803507470864464940101308, −6.29445865007141718674511496603, −5.60494696841649733936617387816, −4.90107081547904170536801789220, −4.38402762445566525105146722688, −3.48550600608682849609112272424, −2.42000959348824453784320811929, −1.73660368193522923800787188800, −0.898271805730672484896419980636, 0.898271805730672484896419980636, 1.73660368193522923800787188800, 2.42000959348824453784320811929, 3.48550600608682849609112272424, 4.38402762445566525105146722688, 4.90107081547904170536801789220, 5.60494696841649733936617387816, 6.29445865007141718674511496603, 7.10424803507470864464940101308, 7.74626382643602401855892436666

Graph of the $Z$-function along the critical line