Properties

Label 2-9360-1.1-c1-0-34
Degree $2$
Conductor $9360$
Sign $1$
Analytic cond. $74.7399$
Root an. cond. $8.64522$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s − 5·11-s + 13-s − 3·17-s + 6·19-s + 7·23-s + 25-s + 6·29-s + 10·31-s + 35-s − 11·37-s − 5·41-s + 4·43-s − 2·47-s − 6·49-s + 5·53-s − 5·55-s + 61-s + 65-s + 4·67-s − 5·71-s + 6·73-s − 5·77-s − 11·79-s − 8·83-s − 3·85-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s − 1.50·11-s + 0.277·13-s − 0.727·17-s + 1.37·19-s + 1.45·23-s + 1/5·25-s + 1.11·29-s + 1.79·31-s + 0.169·35-s − 1.80·37-s − 0.780·41-s + 0.609·43-s − 0.291·47-s − 6/7·49-s + 0.686·53-s − 0.674·55-s + 0.128·61-s + 0.124·65-s + 0.488·67-s − 0.593·71-s + 0.702·73-s − 0.569·77-s − 1.23·79-s − 0.878·83-s − 0.325·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9360\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(74.7399\)
Root analytic conductor: \(8.64522\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.266688144\)
\(L(\frac12)\) \(\approx\) \(2.266688144\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 - T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68693676604949439671347270208, −7.02313765035128212540049865852, −6.42274847579947540880706979198, −5.40915322282046320753400186170, −5.09929736483500995034623978610, −4.42063389905168589515732204901, −3.12351094414878180406662805444, −2.78559065578662385079331693806, −1.72204133107245569291955922799, −0.73378386565205171274688099844, 0.73378386565205171274688099844, 1.72204133107245569291955922799, 2.78559065578662385079331693806, 3.12351094414878180406662805444, 4.42063389905168589515732204901, 5.09929736483500995034623978610, 5.40915322282046320753400186170, 6.42274847579947540880706979198, 7.02313765035128212540049865852, 7.68693676604949439671347270208

Graph of the $Z$-function along the critical line