| L(s) = 1 | + (0.5 + 0.866i)3-s + (1.36 + 0.366i)5-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)13-s + (0.366 + 1.36i)15-s − i·17-s + (−0.866 + 0.5i)23-s + (0.866 + 0.5i)25-s − 0.999·27-s + (−1.36 − 0.366i)31-s + (−1 − i)37-s + (0.499 − 0.866i)39-s + (1.36 + 0.366i)41-s + (−0.866 − 0.5i)43-s + (−0.999 + 0.999i)45-s + ⋯ |
| L(s) = 1 | + (0.5 + 0.866i)3-s + (1.36 + 0.366i)5-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)13-s + (0.366 + 1.36i)15-s − i·17-s + (−0.866 + 0.5i)23-s + (0.866 + 0.5i)25-s − 0.999·27-s + (−1.36 − 0.366i)31-s + (−1 − i)37-s + (0.499 − 0.866i)39-s + (1.36 + 0.366i)41-s + (−0.866 − 0.5i)43-s + (−0.999 + 0.999i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.617 - 0.786i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.617 - 0.786i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.374015674\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.374015674\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
| good | 5 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + iT - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 37 | \( 1 + (1 + i)T + iT^{2} \) |
| 41 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + (-1 - i)T + iT^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32751613516854217594608569706, −9.488517803539069044719904894606, −9.122868575830957999130430945898, −7.905647972012814351218688878004, −7.07459483921037361991889090942, −5.66711354237621127356006277412, −5.41008212271213825754309856141, −4.07275626799507185591296382738, −2.90562487147164154701597476671, −2.10133350906273524177809593040,
1.64386826607354710263638273602, 2.25241390129955445519990050153, 3.68168941404254976123912345850, 5.03212861946125897489745748922, 6.06114092603797961336957786450, 6.59392283560290303042138392316, 7.63234098919755376672237916712, 8.583305114507488194226785525560, 9.239739349638760949831844354883, 9.922821375376680375672689662101