Properties

Label 2-936-104.99-c1-0-0
Degree $2$
Conductor $936$
Sign $-0.289 + 0.957i$
Analytic cond. $7.47399$
Root an. cond. $2.73386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 + i)2-s + 2i·4-s + (−2.54 + 2.54i)5-s + (−2.54 − 2.54i)7-s + (−2 + 2i)8-s − 5.09·10-s + (−1 + i)11-s + (2.54 − 2.54i)13-s − 5.09i·14-s − 4·16-s − 3i·17-s + (2 + 2i)19-s + (−5.09 − 5.09i)20-s − 2·22-s − 5.09·23-s + ⋯
L(s)  = 1  + (0.707 + 0.707i)2-s + i·4-s + (−1.14 + 1.14i)5-s + (−0.963 − 0.963i)7-s + (−0.707 + 0.707i)8-s − 1.61·10-s + (−0.301 + 0.301i)11-s + (0.707 − 0.707i)13-s − 1.36i·14-s − 16-s − 0.727i·17-s + (0.458 + 0.458i)19-s + (−1.14 − 1.14i)20-s − 0.426·22-s − 1.06·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.289 + 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.289 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(936\)    =    \(2^{3} \cdot 3^{2} \cdot 13\)
Sign: $-0.289 + 0.957i$
Analytic conductor: \(7.47399\)
Root analytic conductor: \(2.73386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{936} (307, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 936,\ (\ :1/2),\ -0.289 + 0.957i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0969116 - 0.130598i\)
\(L(\frac12)\) \(\approx\) \(0.0969116 - 0.130598i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1 - i)T \)
3 \( 1 \)
13 \( 1 + (-2.54 + 2.54i)T \)
good5 \( 1 + (2.54 - 2.54i)T - 5iT^{2} \)
7 \( 1 + (2.54 + 2.54i)T + 7iT^{2} \)
11 \( 1 + (1 - i)T - 11iT^{2} \)
17 \( 1 + 3iT - 17T^{2} \)
19 \( 1 + (-2 - 2i)T + 19iT^{2} \)
23 \( 1 + 5.09T + 23T^{2} \)
29 \( 1 + 5.09iT - 29T^{2} \)
31 \( 1 + (5.09 - 5.09i)T - 31iT^{2} \)
37 \( 1 + (2.54 + 2.54i)T + 37iT^{2} \)
41 \( 1 + (6 + 6i)T + 41iT^{2} \)
43 \( 1 - iT - 43T^{2} \)
47 \( 1 + (-2.54 - 2.54i)T + 47iT^{2} \)
53 \( 1 - 5.09iT - 53T^{2} \)
59 \( 1 + (8 - 8i)T - 59iT^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 + (-3 - 3i)T + 67iT^{2} \)
71 \( 1 + (7.64 - 7.64i)T - 71iT^{2} \)
73 \( 1 + (6 - 6i)T - 73iT^{2} \)
79 \( 1 - 5.09iT - 79T^{2} \)
83 \( 1 + (5 + 5i)T + 83iT^{2} \)
89 \( 1 + (-2 + 2i)T - 89iT^{2} \)
97 \( 1 + (7 + 7i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.65097622313589644137810284523, −10.02601520290678690341246626023, −8.683190665843867657147808977330, −7.57053198003679713663433772003, −7.37830098839355336475992615296, −6.51103404869526691408552508208, −5.60822809290661468401702185975, −4.18176222053919072094354349988, −3.59261456044877395895479177038, −2.86453597638214190831250290582, 0.05835311665046828739473003474, 1.70739537306349211100238941549, 3.21717288119788224754538395392, 3.91230952468853752880143043541, 4.90773780451124276007229067658, 5.78104612071758026927459934939, 6.61546003472042275916886560629, 7.993260963596209966021251155286, 8.884793620140542492315316168548, 9.345569557340762534233857571100

Graph of the $Z$-function along the critical line