L(s) = 1 | + (1 − i)2-s − 2i·4-s + (−2.54 − 2.54i)5-s + (−2.54 + 2.54i)7-s + (−2 − 2i)8-s − 5.09·10-s + (−1 − i)11-s + (2.54 + 2.54i)13-s + 5.09i·14-s − 4·16-s + 3i·17-s + (2 − 2i)19-s + (−5.09 + 5.09i)20-s − 2·22-s − 5.09·23-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − i·4-s + (−1.14 − 1.14i)5-s + (−0.963 + 0.963i)7-s + (−0.707 − 0.707i)8-s − 1.61·10-s + (−0.301 − 0.301i)11-s + (0.707 + 0.707i)13-s + 1.36i·14-s − 16-s + 0.727i·17-s + (0.458 − 0.458i)19-s + (−1.14 + 1.14i)20-s − 0.426·22-s − 1.06·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.289 - 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.289 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0969116 + 0.130598i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0969116 + 0.130598i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 + i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-2.54 - 2.54i)T \) |
good | 5 | \( 1 + (2.54 + 2.54i)T + 5iT^{2} \) |
| 7 | \( 1 + (2.54 - 2.54i)T - 7iT^{2} \) |
| 11 | \( 1 + (1 + i)T + 11iT^{2} \) |
| 17 | \( 1 - 3iT - 17T^{2} \) |
| 19 | \( 1 + (-2 + 2i)T - 19iT^{2} \) |
| 23 | \( 1 + 5.09T + 23T^{2} \) |
| 29 | \( 1 - 5.09iT - 29T^{2} \) |
| 31 | \( 1 + (5.09 + 5.09i)T + 31iT^{2} \) |
| 37 | \( 1 + (2.54 - 2.54i)T - 37iT^{2} \) |
| 41 | \( 1 + (6 - 6i)T - 41iT^{2} \) |
| 43 | \( 1 + iT - 43T^{2} \) |
| 47 | \( 1 + (-2.54 + 2.54i)T - 47iT^{2} \) |
| 53 | \( 1 + 5.09iT - 53T^{2} \) |
| 59 | \( 1 + (8 + 8i)T + 59iT^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + (-3 + 3i)T - 67iT^{2} \) |
| 71 | \( 1 + (7.64 + 7.64i)T + 71iT^{2} \) |
| 73 | \( 1 + (6 + 6i)T + 73iT^{2} \) |
| 79 | \( 1 + 5.09iT - 79T^{2} \) |
| 83 | \( 1 + (5 - 5i)T - 83iT^{2} \) |
| 89 | \( 1 + (-2 - 2i)T + 89iT^{2} \) |
| 97 | \( 1 + (7 - 7i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.345569557340762534233857571100, −8.884793620140542492315316168548, −7.993260963596209966021251155286, −6.61546003472042275916886560629, −5.78104612071758026927459934939, −4.90773780451124276007229067658, −3.91230952468853752880143043541, −3.21717288119788224754538395392, −1.70739537306349211100238941549, −0.05835311665046828739473003474,
2.86453597638214190831250290582, 3.59261456044877395895479177038, 4.18176222053919072094354349988, 5.60822809290661468401702185975, 6.51103404869526691408552508208, 7.37830098839355336475992615296, 7.57053198003679713663433772003, 8.683190665843867657147808977330, 10.02601520290678690341246626023, 10.65097622313589644137810284523