Properties

Label 2-936-104.51-c0-0-1
Degree $2$
Conductor $936$
Sign $1$
Analytic cond. $0.467124$
Root an. cond. $0.683465$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 7-s − 8-s − 10-s + 13-s + 14-s + 16-s + 17-s + 20-s − 26-s − 28-s + 2·31-s − 32-s − 34-s − 35-s − 37-s − 40-s − 43-s + 47-s + 52-s + 56-s − 2·62-s + 64-s + 65-s + 68-s + ⋯
L(s)  = 1  − 2-s + 4-s + 5-s − 7-s − 8-s − 10-s + 13-s + 14-s + 16-s + 17-s + 20-s − 26-s − 28-s + 2·31-s − 32-s − 34-s − 35-s − 37-s − 40-s − 43-s + 47-s + 52-s + 56-s − 2·62-s + 64-s + 65-s + 68-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(936\)    =    \(2^{3} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(0.467124\)
Root analytic conductor: \(0.683465\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{936} (883, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 936,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7493759327\)
\(L(\frac12)\) \(\approx\) \(0.7493759327\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - T + T^{2} \)
7 \( 1 + T + T^{2} \)
11 \( ( 1 - T )( 1 + T ) \)
17 \( 1 - T + T^{2} \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( ( 1 - T )^{2} \)
37 \( 1 + T + T^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( 1 + T + T^{2} \)
47 \( 1 - T + T^{2} \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( 1 - T + T^{2} \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.04538447887338157989606832290, −9.590168661714193585167030455251, −8.718567837721073772849137194548, −7.930635037911471552829375101604, −6.73503320946955415370360755074, −6.23192187633918577809210803507, −5.41499807564931199081157502266, −3.60752461315762887217628336411, −2.64096071576240479043933942638, −1.31290686729774965324606450596, 1.31290686729774965324606450596, 2.64096071576240479043933942638, 3.60752461315762887217628336411, 5.41499807564931199081157502266, 6.23192187633918577809210803507, 6.73503320946955415370360755074, 7.930635037911471552829375101604, 8.718567837721073772849137194548, 9.590168661714193585167030455251, 10.04538447887338157989606832290

Graph of the $Z$-function along the critical line