Properties

Label 2-936-1.1-c3-0-38
Degree $2$
Conductor $936$
Sign $-1$
Analytic cond. $55.2257$
Root an. cond. $7.43140$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.63·5-s + 5.63·7-s − 34.5·11-s + 13·13-s − 2·17-s − 88.1·19-s + 64·23-s − 66.7·25-s − 23.7·29-s − 284.·31-s + 42.9·35-s + 115.·37-s − 1.41·41-s − 337.·43-s + 198.·47-s − 311.·49-s − 59.0·53-s − 263.·55-s + 188.·59-s + 336.·61-s + 99.1·65-s − 531.·67-s + 510.·71-s − 164.·73-s − 194.·77-s − 29.3·79-s + 117.·83-s + ⋯
L(s)  = 1  + 0.682·5-s + 0.303·7-s − 0.946·11-s + 0.277·13-s − 0.0285·17-s − 1.06·19-s + 0.580·23-s − 0.534·25-s − 0.152·29-s − 1.64·31-s + 0.207·35-s + 0.512·37-s − 0.00537·41-s − 1.19·43-s + 0.615·47-s − 0.907·49-s − 0.153·53-s − 0.645·55-s + 0.415·59-s + 0.707·61-s + 0.189·65-s − 0.968·67-s + 0.852·71-s − 0.263·73-s − 0.287·77-s − 0.0417·79-s + 0.155·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(936\)    =    \(2^{3} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(55.2257\)
Root analytic conductor: \(7.43140\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 936,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - 13T \)
good5 \( 1 - 7.63T + 125T^{2} \)
7 \( 1 - 5.63T + 343T^{2} \)
11 \( 1 + 34.5T + 1.33e3T^{2} \)
17 \( 1 + 2T + 4.91e3T^{2} \)
19 \( 1 + 88.1T + 6.85e3T^{2} \)
23 \( 1 - 64T + 1.21e4T^{2} \)
29 \( 1 + 23.7T + 2.43e4T^{2} \)
31 \( 1 + 284.T + 2.97e4T^{2} \)
37 \( 1 - 115.T + 5.06e4T^{2} \)
41 \( 1 + 1.41T + 6.89e4T^{2} \)
43 \( 1 + 337.T + 7.95e4T^{2} \)
47 \( 1 - 198.T + 1.03e5T^{2} \)
53 \( 1 + 59.0T + 1.48e5T^{2} \)
59 \( 1 - 188.T + 2.05e5T^{2} \)
61 \( 1 - 336.T + 2.26e5T^{2} \)
67 \( 1 + 531.T + 3.00e5T^{2} \)
71 \( 1 - 510.T + 3.57e5T^{2} \)
73 \( 1 + 164.T + 3.89e5T^{2} \)
79 \( 1 + 29.3T + 4.93e5T^{2} \)
83 \( 1 - 117.T + 5.71e5T^{2} \)
89 \( 1 + 508.T + 7.04e5T^{2} \)
97 \( 1 + 1.02e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.273529288320121255977776466755, −8.441891149763963211912744223343, −7.62675346924794977098064752330, −6.63124046703839475349939757888, −5.70784270031473736785867980071, −4.98717934072757492915860192632, −3.82138139149393328989294307802, −2.55571689606268797681198603124, −1.62009959051762735259982879282, 0, 1.62009959051762735259982879282, 2.55571689606268797681198603124, 3.82138139149393328989294307802, 4.98717934072757492915860192632, 5.70784270031473736785867980071, 6.63124046703839475349939757888, 7.62675346924794977098064752330, 8.441891149763963211912744223343, 9.273529288320121255977776466755

Graph of the $Z$-function along the critical line