Properties

Label 2-936-1.1-c1-0-7
Degree $2$
Conductor $936$
Sign $1$
Analytic cond. $7.47399$
Root an. cond. $2.73386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 5·7-s + 2·11-s − 13-s + 3·17-s − 2·19-s − 4·23-s − 4·25-s + 6·29-s − 4·31-s + 5·35-s + 11·37-s − 8·41-s − 43-s − 9·47-s + 18·49-s + 12·53-s + 2·55-s − 6·59-s − 65-s + 6·67-s − 7·71-s − 2·73-s + 10·77-s + 12·79-s + 16·83-s + 3·85-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.88·7-s + 0.603·11-s − 0.277·13-s + 0.727·17-s − 0.458·19-s − 0.834·23-s − 4/5·25-s + 1.11·29-s − 0.718·31-s + 0.845·35-s + 1.80·37-s − 1.24·41-s − 0.152·43-s − 1.31·47-s + 18/7·49-s + 1.64·53-s + 0.269·55-s − 0.781·59-s − 0.124·65-s + 0.733·67-s − 0.830·71-s − 0.234·73-s + 1.13·77-s + 1.35·79-s + 1.75·83-s + 0.325·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(936\)    =    \(2^{3} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(7.47399\)
Root analytic conductor: \(2.73386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 936,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.141130990\)
\(L(\frac12)\) \(\approx\) \(2.141130990\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 7 T + p T^{2} \) 1.71.h
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.10224008136720573625169806871, −9.225887962883235463810272968886, −8.190620854395079261439572770271, −7.81593597663044282712186867044, −6.60735802802977250427022700463, −5.61571239171975099148075759195, −4.80778500236897303143309002739, −3.91100411636941413859503964078, −2.29076143224509280614694719959, −1.35851693418797878688327656091, 1.35851693418797878688327656091, 2.29076143224509280614694719959, 3.91100411636941413859503964078, 4.80778500236897303143309002739, 5.61571239171975099148075759195, 6.60735802802977250427022700463, 7.81593597663044282712186867044, 8.190620854395079261439572770271, 9.225887962883235463810272968886, 10.10224008136720573625169806871

Graph of the $Z$-function along the critical line