L(s) = 1 | − 2·5-s + 2·7-s − 4·11-s − 13-s − 2·19-s − 4·23-s − 25-s + 2·31-s − 4·35-s − 10·37-s − 2·41-s + 8·43-s − 3·49-s − 12·53-s + 8·55-s − 12·59-s − 6·61-s + 2·65-s − 6·67-s + 8·71-s − 2·73-s − 8·77-s + 12·79-s + 4·83-s − 14·89-s − 2·91-s + 4·95-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 0.755·7-s − 1.20·11-s − 0.277·13-s − 0.458·19-s − 0.834·23-s − 1/5·25-s + 0.359·31-s − 0.676·35-s − 1.64·37-s − 0.312·41-s + 1.21·43-s − 3/7·49-s − 1.64·53-s + 1.07·55-s − 1.56·59-s − 0.768·61-s + 0.248·65-s − 0.733·67-s + 0.949·71-s − 0.234·73-s − 0.911·77-s + 1.35·79-s + 0.439·83-s − 1.48·89-s − 0.209·91-s + 0.410·95-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 5 | \( 1 + 2 T + p T^{2} \) |
| 7 | \( 1 - 2 T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 + 2 T + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 - 2 T + p T^{2} \) |
| 37 | \( 1 + 10 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 - 8 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 12 T + p T^{2} \) |
| 59 | \( 1 + 12 T + p T^{2} \) |
| 61 | \( 1 + 6 T + p T^{2} \) |
| 67 | \( 1 + 6 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 - 12 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 + 14 T + p T^{2} \) |
| 97 | \( 1 + 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.709908242354085867198585893168, −8.560857309044347612087495782838, −7.917819582253129208914516956622, −7.40568873395535407748018257450, −6.16078101072896661105492972029, −5.08169261977535984530512865091, −4.35999893307754658375735542809, −3.20854141442725326453087823255, −1.93418903533460519772261561653, 0,
1.93418903533460519772261561653, 3.20854141442725326453087823255, 4.35999893307754658375735542809, 5.08169261977535984530512865091, 6.16078101072896661105492972029, 7.40568873395535407748018257450, 7.917819582253129208914516956622, 8.560857309044347612087495782838, 9.709908242354085867198585893168