L(s) = 1 | + (−1.03 − 0.866i)2-s + (0.5 − 2.83i)3-s + (−0.0320 − 0.181i)4-s + (−0.152 + 0.866i)5-s + (−2.97 + 2.49i)6-s + (−1.47 + 2.54i)8-s + (−4.97 − 1.80i)9-s + (0.907 − 0.761i)10-s − 2.22·11-s − 0.532·12-s + (−1.97 + 1.65i)13-s + (2.37 + 0.866i)15-s + (3.37 − 1.22i)16-s + (0.439 − 0.160i)17-s + (3.56 + 6.17i)18-s + (−1.52 + 4.08i)19-s + ⋯ |
L(s) = 1 | + (−0.729 − 0.612i)2-s + (0.288 − 1.63i)3-s + (−0.0160 − 0.0909i)4-s + (−0.0682 + 0.387i)5-s + (−1.21 + 1.01i)6-s + (−0.520 + 0.901i)8-s + (−1.65 − 0.603i)9-s + (0.287 − 0.240i)10-s − 0.671·11-s − 0.153·12-s + (−0.546 + 0.458i)13-s + (0.614 + 0.223i)15-s + (0.844 − 0.307i)16-s + (0.106 − 0.0388i)17-s + (0.840 + 1.45i)18-s + (−0.348 + 0.937i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 931 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.729 - 0.684i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 931 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.729 - 0.684i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0814426 + 0.0322430i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0814426 + 0.0322430i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 19 | \( 1 + (1.52 - 4.08i)T \) |
good | 2 | \( 1 + (1.03 + 0.866i)T + (0.347 + 1.96i)T^{2} \) |
| 3 | \( 1 + (-0.5 + 2.83i)T + (-2.81 - 1.02i)T^{2} \) |
| 5 | \( 1 + (0.152 - 0.866i)T + (-4.69 - 1.71i)T^{2} \) |
| 11 | \( 1 + 2.22T + 11T^{2} \) |
| 13 | \( 1 + (1.97 - 1.65i)T + (2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (-0.439 + 0.160i)T + (13.0 - 10.9i)T^{2} \) |
| 23 | \( 1 + (2.06 - 1.73i)T + (3.99 - 22.6i)T^{2} \) |
| 29 | \( 1 + (1.19 + 6.77i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (3.55 - 6.15i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.47 - 4.28i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.89 + 1.59i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (3.66 - 1.33i)T + (32.9 - 27.6i)T^{2} \) |
| 47 | \( 1 + (6.85 + 2.49i)T + (36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 + (0.492 + 2.79i)T + (-49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (5.92 - 2.15i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (6.99 - 5.86i)T + (10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (-5.87 + 4.93i)T + (11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-8.74 + 3.18i)T + (54.3 - 45.6i)T^{2} \) |
| 73 | \( 1 + (0.241 - 1.36i)T + (-68.5 - 24.9i)T^{2} \) |
| 79 | \( 1 + (-11.1 + 4.05i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (7.41 + 12.8i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.78 - 10.1i)T + (-83.6 + 30.4i)T^{2} \) |
| 97 | \( 1 + (1.64 - 9.30i)T + (-91.1 - 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18983026823879812772924768792, −9.320593267874970528936740110097, −8.336365344029390594758267116985, −7.84811126560987543820429158739, −6.91945588528898428415892222121, −6.13140676075085387033777721632, −5.10874413211911435463253380599, −3.23984065081977509938873455065, −2.23790720582447701941842409105, −1.48882961232655279408848568665,
0.04934543021706651723839296075, 2.75186593102138810008308190176, 3.69115467550401404468117782246, 4.69991974713807700551515314768, 5.39625657995629602710296843668, 6.69608415672713069617748603848, 7.77215696483886760066856873725, 8.460401926557235468506277280469, 9.145864089802793022386001214021, 9.714365503749357377143892796745