L(s) = 1 | + i·2-s + (−1.67 + 0.447i)3-s − 4-s + (0.866 − 0.5i)5-s + (−0.447 − 1.67i)6-s + (−1.32 + 2.29i)7-s − i·8-s + (2.59 − 1.49i)9-s + (0.5 + 0.866i)10-s + (−1.35 − 2.34i)11-s + (1.67 − 0.447i)12-s + (3.49 − 2.01i)13-s + (−2.29 − 1.32i)14-s + (−1.22 + 1.22i)15-s + 16-s + (0.370 − 0.642i)17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (−0.966 + 0.258i)3-s − 0.5·4-s + (0.387 − 0.223i)5-s + (−0.182 − 0.683i)6-s + (−0.499 + 0.865i)7-s − 0.353i·8-s + (0.866 − 0.499i)9-s + (0.158 + 0.273i)10-s + (−0.408 − 0.707i)11-s + (0.483 − 0.129i)12-s + (0.970 − 0.560i)13-s + (−0.612 − 0.353i)14-s + (−0.316 + 0.316i)15-s + 0.250·16-s + (0.0899 − 0.155i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.726 - 0.687i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.726 - 0.687i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.00001 + 0.398261i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00001 + 0.398261i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 + (1.67 - 0.447i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 31 | \( 1 + (-4.10 + 3.76i)T \) |
good | 7 | \( 1 + (1.32 - 2.29i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.35 + 2.34i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.49 + 2.01i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.370 + 0.642i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.17 + 2.03i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 3.17T + 23T^{2} \) |
| 29 | \( 1 - 1.11T + 29T^{2} \) |
| 37 | \( 1 + (-8.66 - 5.00i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.56 + 2.63i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.20 - 2.42i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.29iT - 47T^{2} \) |
| 53 | \( 1 + (-0.432 - 0.748i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.0673 + 0.0388i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 8.21iT - 61T^{2} \) |
| 67 | \( 1 + (-4.09 - 7.08i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-11.6 + 6.71i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-9.24 + 5.33i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (10.5 + 6.09i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.44 + 4.24i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 17.1T + 89T^{2} \) |
| 97 | \( 1 - 12.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03628853671505025758010289263, −9.353123175471362674684795612183, −8.513427013952566064425394157213, −7.60014244466465996780309654775, −6.22751893710422589747733892292, −6.04119358016147205432499240348, −5.24118560928966836311319724063, −4.17598625133437558532233914476, −2.85020315841011904328772266603, −0.813791942182303643307683866154,
0.961494501262997563542538751165, 2.18098936577402158282023310730, 3.71807542261291705239662082042, 4.50753200084704326518488372511, 5.65954830079175673924031271697, 6.46897533089441681039824984885, 7.28786659581080303952313275279, 8.268114074048193059035150169564, 9.670086078755443211957867645490, 10.01855988596137372516830803845