L(s) = 1 | − i·2-s + (−0.449 − 1.67i)3-s − 4-s + (−0.866 + 0.5i)5-s + (−1.67 + 0.449i)6-s + (−1.32 + 2.29i)7-s + i·8-s + (−2.59 + 1.50i)9-s + (0.5 + 0.866i)10-s + (1.35 + 2.34i)11-s + (0.449 + 1.67i)12-s + (3.49 − 2.01i)13-s + (2.29 + 1.32i)14-s + (1.22 + 1.22i)15-s + 16-s + (−0.370 + 0.642i)17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (−0.259 − 0.965i)3-s − 0.5·4-s + (−0.387 + 0.223i)5-s + (−0.682 + 0.183i)6-s + (−0.499 + 0.865i)7-s + 0.353i·8-s + (−0.865 + 0.500i)9-s + (0.158 + 0.273i)10-s + (0.408 + 0.707i)11-s + (0.129 + 0.482i)12-s + (0.970 − 0.560i)13-s + (0.612 + 0.353i)14-s + (0.316 + 0.316i)15-s + 0.250·16-s + (−0.0899 + 0.155i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.688 + 0.725i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.688 + 0.725i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06280 - 0.456687i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06280 - 0.456687i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + (0.449 + 1.67i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 31 | \( 1 + (-4.10 + 3.76i)T \) |
good | 7 | \( 1 + (1.32 - 2.29i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.35 - 2.34i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.49 + 2.01i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (0.370 - 0.642i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.17 + 2.03i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 3.17T + 23T^{2} \) |
| 29 | \( 1 + 1.11T + 29T^{2} \) |
| 37 | \( 1 + (-8.66 - 5.00i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.56 - 2.63i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.20 - 2.42i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3.29iT - 47T^{2} \) |
| 53 | \( 1 + (0.432 + 0.748i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.0673 - 0.0388i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 8.21iT - 61T^{2} \) |
| 67 | \( 1 + (-4.09 - 7.08i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (11.6 - 6.71i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-9.24 + 5.33i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (10.5 + 6.09i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.44 - 4.24i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 17.1T + 89T^{2} \) |
| 97 | \( 1 - 12.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03838297384129787730686283245, −9.082789569338655772856692236096, −8.366872359504777904129773529031, −7.46509932630017085305933780964, −6.45831147842210180532452134541, −5.75908330615852088721149156756, −4.57654171642000510766649289140, −3.23592071278256361107373626953, −2.40620449522374256177627748859, −1.02926097771991260307374605362,
0.76250513066620287696075717438, 3.36087243210647291602321742509, 3.95051095180909483722558274759, 4.84198413127569430300423948058, 5.94956506098427408810421103760, 6.59035915882072667383248468949, 7.64819388828514148249059991199, 8.668752394499074771453441069622, 9.190590974403720246851683318237, 10.09797645151645357480131773146