L(s) = 1 | + i·2-s + i·3-s − 4-s + (2 + i)5-s − 6-s − 0.828i·7-s − i·8-s − 9-s + (−1 + 2i)10-s − 0.828·11-s − i·12-s + 4.82i·13-s + 0.828·14-s + (−1 + 2i)15-s + 16-s − 0.828i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577i·3-s − 0.5·4-s + (0.894 + 0.447i)5-s − 0.408·6-s − 0.313i·7-s − 0.353i·8-s − 0.333·9-s + (−0.316 + 0.632i)10-s − 0.249·11-s − 0.288i·12-s + 1.33i·13-s + 0.221·14-s + (−0.258 + 0.516i)15-s + 0.250·16-s − 0.200i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.339868 + 1.43970i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.339868 + 1.43970i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + (-2 - i)T \) |
| 31 | \( 1 - T \) |
good | 7 | \( 1 + 0.828iT - 7T^{2} \) |
| 11 | \( 1 + 0.828T + 11T^{2} \) |
| 13 | \( 1 - 4.82iT - 13T^{2} \) |
| 17 | \( 1 + 0.828iT - 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 - 8.48iT - 23T^{2} \) |
| 29 | \( 1 + 9.65T + 29T^{2} \) |
| 37 | \( 1 - 10.4iT - 37T^{2} \) |
| 41 | \( 1 - 7.65T + 41T^{2} \) |
| 43 | \( 1 + 9.65iT - 43T^{2} \) |
| 47 | \( 1 - 5.65iT - 47T^{2} \) |
| 53 | \( 1 - 0.343iT - 53T^{2} \) |
| 59 | \( 1 + 3.17T + 59T^{2} \) |
| 61 | \( 1 - 0.828T + 61T^{2} \) |
| 67 | \( 1 + 9.17iT - 67T^{2} \) |
| 71 | \( 1 + 2.82T + 71T^{2} \) |
| 73 | \( 1 + 13.6iT - 73T^{2} \) |
| 79 | \( 1 + 11.3T + 79T^{2} \) |
| 83 | \( 1 + 1.65iT - 83T^{2} \) |
| 89 | \( 1 + 4.82T + 89T^{2} \) |
| 97 | \( 1 - 11.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22650087369992168303289824540, −9.375070845743693414407770482893, −9.095932917174453928544945713277, −7.70899178771400918457499132755, −7.02100567593980816687052085728, −6.06542456016819203145822753348, −5.35065236877848828949201858798, −4.32924006100929083793666695374, −3.29145313993073109638568645818, −1.80061650927439254375156084474,
0.69654635379179248564905703104, 2.07963496605641049375298459077, 2.85826137747690753053241121816, 4.30221393724165280023682052796, 5.52648097532418251507673643851, 5.91596310820082940209739079421, 7.25873932842218671324122685503, 8.260296213432651384168522009522, 8.902624786706764002329290319017, 9.795041672328777629679201147150