L(s) = 1 | − i·2-s − i·3-s − 4-s + (2 − i)5-s − 6-s − 4.82i·7-s + i·8-s − 9-s + (−1 − 2i)10-s + 4.82·11-s + i·12-s + 0.828i·13-s − 4.82·14-s + (−1 − 2i)15-s + 16-s − 4.82i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.577i·3-s − 0.5·4-s + (0.894 − 0.447i)5-s − 0.408·6-s − 1.82i·7-s + 0.353i·8-s − 0.333·9-s + (−0.316 − 0.632i)10-s + 1.45·11-s + 0.288i·12-s + 0.229i·13-s − 1.29·14-s + (−0.258 − 0.516i)15-s + 0.250·16-s − 1.17i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.417636 - 1.76913i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.417636 - 1.76913i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + (-2 + i)T \) |
| 31 | \( 1 - T \) |
good | 7 | \( 1 + 4.82iT - 7T^{2} \) |
| 11 | \( 1 - 4.82T + 11T^{2} \) |
| 13 | \( 1 - 0.828iT - 13T^{2} \) |
| 17 | \( 1 + 4.82iT - 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 - 8.48iT - 23T^{2} \) |
| 29 | \( 1 - 1.65T + 29T^{2} \) |
| 37 | \( 1 - 6.48iT - 37T^{2} \) |
| 41 | \( 1 + 3.65T + 41T^{2} \) |
| 43 | \( 1 + 1.65iT - 43T^{2} \) |
| 47 | \( 1 - 5.65iT - 47T^{2} \) |
| 53 | \( 1 + 11.6iT - 53T^{2} \) |
| 59 | \( 1 + 8.82T + 59T^{2} \) |
| 61 | \( 1 + 4.82T + 61T^{2} \) |
| 67 | \( 1 - 14.8iT - 67T^{2} \) |
| 71 | \( 1 - 2.82T + 71T^{2} \) |
| 73 | \( 1 - 2.34iT - 73T^{2} \) |
| 79 | \( 1 - 11.3T + 79T^{2} \) |
| 83 | \( 1 + 9.65iT - 83T^{2} \) |
| 89 | \( 1 - 0.828T + 89T^{2} \) |
| 97 | \( 1 - 11.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.653132742611219991084077974208, −9.241733465783119302331034641180, −8.045096669966714369189407941561, −7.07162826588293202923037717025, −6.44879111969137081795486182505, −5.15290828821414406664221761753, −4.21824711704177744823626649095, −3.23410035679111686880220257433, −1.62930283802482778087227395369, −0.959594035370683049724179886956,
1.94369054643201704776657486832, 3.11181787353464740183626680143, 4.39188585278430122767298644010, 5.45069266986876405512148788372, 6.18939560252608391018206540411, 6.56516401401172208262173518824, 8.148516290989129845164720408409, 8.969327196547171098597140561925, 9.244108671645683516592091979062, 10.25424066240474540506936014514