| L(s) = 1 | + i·2-s + i·3-s − 4-s + (0.447 − 2.19i)5-s − 6-s + 3.38i·7-s − i·8-s − 9-s + (2.19 + 0.447i)10-s − 6.27·11-s − i·12-s − 6.89i·13-s − 3.38·14-s + (2.19 + 0.447i)15-s + 16-s + 1.40i·17-s + ⋯ |
| L(s) = 1 | + 0.707i·2-s + 0.577i·3-s − 0.5·4-s + (0.200 − 0.979i)5-s − 0.408·6-s + 1.27i·7-s − 0.353i·8-s − 0.333·9-s + (0.692 + 0.141i)10-s − 1.89·11-s − 0.288i·12-s − 1.91i·13-s − 0.903·14-s + (0.565 + 0.115i)15-s + 0.250·16-s + 0.341i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.200 + 0.979i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.200 + 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.104166 - 0.127598i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.104166 - 0.127598i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - iT \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + (-0.447 + 2.19i)T \) |
| 31 | \( 1 - T \) |
| good | 7 | \( 1 - 3.38iT - 7T^{2} \) |
| 11 | \( 1 + 6.27T + 11T^{2} \) |
| 13 | \( 1 + 6.89iT - 13T^{2} \) |
| 17 | \( 1 - 1.40iT - 17T^{2} \) |
| 19 | \( 1 + 1.97T + 19T^{2} \) |
| 23 | \( 1 - 2.40iT - 23T^{2} \) |
| 29 | \( 1 + 7.79T + 29T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 + 9.58T + 41T^{2} \) |
| 43 | \( 1 + 3.38iT - 43T^{2} \) |
| 47 | \( 1 + 2.59iT - 47T^{2} \) |
| 53 | \( 1 + 8.40iT - 53T^{2} \) |
| 59 | \( 1 - 0.973T + 59T^{2} \) |
| 61 | \( 1 - 7.40T + 61T^{2} \) |
| 67 | \( 1 + 1.92iT - 67T^{2} \) |
| 71 | \( 1 - 0.540T + 71T^{2} \) |
| 73 | \( 1 - 1.43iT - 73T^{2} \) |
| 79 | \( 1 + 6.94T + 79T^{2} \) |
| 83 | \( 1 - 9.19iT - 83T^{2} \) |
| 89 | \( 1 + 13.3T + 89T^{2} \) |
| 97 | \( 1 - 10.6iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.841746554166867498580831334292, −8.690896900615333546563292121162, −8.332534476752644375068060409078, −7.59003750877674087885400425567, −5.93176213792738999685610177364, −5.31858402971488320460418665568, −5.10907662013859404269781812493, −3.52017977232265757727018159209, −2.32532413187893770101005317513, −0.07154066185754190947194523075,
1.80768634455546148930607158416, 2.71205513838039692944580665886, 3.85536816313664361228109378132, 4.85289405987524021816122538441, 6.13353763344838522930619084444, 7.12741207866359683834639781868, 7.54200778198801671637102103374, 8.661629216843652913407134814608, 9.803671088568408597423983109345, 10.39737996702642924786376461217