Properties

Label 2-930-5.4-c1-0-2
Degree $2$
Conductor $930$
Sign $-0.447 - 0.894i$
Analytic cond. $7.42608$
Root an. cond. $2.72508$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s i·3-s − 4-s + (−1 − 2i)5-s + 6-s + i·7-s i·8-s − 9-s + (2 − i)10-s − 5·11-s + i·12-s + 4i·13-s − 14-s + (−2 + i)15-s + 16-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + (−0.447 − 0.894i)5-s + 0.408·6-s + 0.377i·7-s − 0.353i·8-s − 0.333·9-s + (0.632 − 0.316i)10-s − 1.50·11-s + 0.288i·12-s + 1.10i·13-s − 0.267·14-s + (−0.516 + 0.258i)15-s + 0.250·16-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(930\)    =    \(2 \cdot 3 \cdot 5 \cdot 31\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(7.42608\)
Root analytic conductor: \(2.72508\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{930} (559, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 930,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.388722 + 0.628966i\)
\(L(\frac12)\) \(\approx\) \(0.388722 + 0.628966i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 + iT \)
5 \( 1 + (1 + 2i)T \)
31 \( 1 - T \)
good7 \( 1 - iT - 7T^{2} \)
11 \( 1 + 5T + 11T^{2} \)
13 \( 1 - 4iT - 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 - 5T + 19T^{2} \)
23 \( 1 - 9iT - 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
37 \( 1 - 8iT - 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + iT - 43T^{2} \)
47 \( 1 + 12iT - 47T^{2} \)
53 \( 1 - 13iT - 53T^{2} \)
59 \( 1 + 10T + 59T^{2} \)
61 \( 1 + 14T + 61T^{2} \)
67 \( 1 - 14iT - 67T^{2} \)
71 \( 1 + 9T + 71T^{2} \)
73 \( 1 - 9iT - 73T^{2} \)
79 \( 1 + 5T + 79T^{2} \)
83 \( 1 + 6iT - 83T^{2} \)
89 \( 1 + 3T + 89T^{2} \)
97 \( 1 + 18iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.10600486064744863422335040363, −9.211098191991994807640338601733, −8.561884869855235754382523425160, −7.61616000176016779642244096715, −7.29121855227043982553249199146, −5.87805932560752718461395752671, −5.30221655571935217398086244202, −4.36839168767893088398497180253, −2.98857294562736104201925937535, −1.40172750430398820767725177859, 0.36339773528994289038468446489, 2.63243592550045901050677890798, 3.12450224960058915117254787891, 4.29577267265008237659604437346, 5.19178200871947861699615301855, 6.22374225769867074162870602737, 7.64378437401921216055901242366, 7.953132079078275551480790536103, 9.192122096228278683362482097397, 10.18874160642155211997753089142

Graph of the $Z$-function along the critical line