L(s) = 1 | − 2-s + (−0.5 − 0.866i)3-s + 4-s + (0.5 − 0.866i)5-s + (0.5 + 0.866i)6-s + (0.5 + 0.866i)7-s − 8-s + (−0.499 + 0.866i)9-s + (−0.5 + 0.866i)10-s + (1.5 − 2.59i)11-s + (−0.5 − 0.866i)12-s + (−1 + 1.73i)13-s + (−0.5 − 0.866i)14-s − 0.999·15-s + 16-s + (−3 − 5.19i)17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (−0.288 − 0.499i)3-s + 0.5·4-s + (0.223 − 0.387i)5-s + (0.204 + 0.353i)6-s + (0.188 + 0.327i)7-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 + 0.273i)10-s + (0.452 − 0.783i)11-s + (−0.144 − 0.249i)12-s + (−0.277 + 0.480i)13-s + (−0.133 − 0.231i)14-s − 0.258·15-s + 0.250·16-s + (−0.727 − 1.26i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.275 + 0.961i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.275 + 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.542732 - 0.719779i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.542732 - 0.719779i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 + (3.5 - 4.33i)T \) |
good | 7 | \( 1 + (-0.5 - 0.866i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1 - 1.73i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3 + 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 6T + 23T^{2} \) |
| 29 | \( 1 - 9T + 29T^{2} \) |
| 37 | \( 1 + (4 + 6.92i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4 + 6.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 6T + 47T^{2} \) |
| 53 | \( 1 + (1.5 - 2.59i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (7.5 + 12.9i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 14T + 61T^{2} \) |
| 67 | \( 1 + (4 - 6.92i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-6 + 10.3i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (7 - 12.1i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4 + 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.5 + 7.79i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + 19T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.636117515485580174543391905415, −8.821014470046287667059007273344, −8.470043355380162917765803633227, −7.06196729034940255194392215070, −6.74909678893546006042465072379, −5.53288856421949049965336521547, −4.72185246044900715789996531479, −3.06703750625511754457083983035, −1.91641237494418434948207602502, −0.58192753142310427380954381581,
1.43845497735194352975432962682, 2.81436069562022185395438184424, 4.06668902048669258430836161170, 5.03606763210404721564561377676, 6.28211456499897401376617156653, 6.84043576405043844082164386713, 7.910285913194898528289174964703, 8.717754513599062075332712427137, 9.640044815890584304711187261602, 10.30820555418554570971033039596