L(s) = 1 | + (−0.707 − 0.707i)2-s + (−1.70 + 0.292i)3-s + 1.00i·4-s + (−2.23 − 0.0743i)5-s + (1.41 + 0.999i)6-s + (0.218 − 0.218i)7-s + (0.707 − 0.707i)8-s + (2.82 − i)9-s + (1.52 + 1.63i)10-s − 0.894i·11-s + (−0.292 − 1.70i)12-s + (3.57 + 3.57i)13-s − 0.309·14-s + (3.83 − 0.527i)15-s − 1.00·16-s + (−4.36 − 4.36i)17-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (−0.985 + 0.169i)3-s + 0.500i·4-s + (−0.999 − 0.0332i)5-s + (0.577 + 0.408i)6-s + (0.0826 − 0.0826i)7-s + (0.250 − 0.250i)8-s + (0.942 − 0.333i)9-s + (0.483 + 0.516i)10-s − 0.269i·11-s + (−0.0845 − 0.492i)12-s + (0.991 + 0.991i)13-s − 0.0826·14-s + (0.990 − 0.136i)15-s − 0.250·16-s + (−1.05 − 1.05i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.360 - 0.932i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.360 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.119133 + 0.173710i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.119133 + 0.173710i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 + (1.70 - 0.292i)T \) |
| 5 | \( 1 + (2.23 + 0.0743i)T \) |
| 31 | \( 1 - T \) |
good | 7 | \( 1 + (-0.218 + 0.218i)T - 7iT^{2} \) |
| 11 | \( 1 + 0.894iT - 11T^{2} \) |
| 13 | \( 1 + (-3.57 - 3.57i)T + 13iT^{2} \) |
| 17 | \( 1 + (4.36 + 4.36i)T + 17iT^{2} \) |
| 19 | \( 1 + 6.55iT - 19T^{2} \) |
| 23 | \( 1 + (3.19 - 3.19i)T - 23iT^{2} \) |
| 29 | \( 1 - 2.39T + 29T^{2} \) |
| 37 | \( 1 + (2 - 2i)T - 37iT^{2} \) |
| 41 | \( 1 - 4.71iT - 41T^{2} \) |
| 43 | \( 1 + (3.37 + 3.37i)T + 43iT^{2} \) |
| 47 | \( 1 + (-8.98 - 8.98i)T + 47iT^{2} \) |
| 53 | \( 1 + (10.1 - 10.1i)T - 53iT^{2} \) |
| 59 | \( 1 + 6.79T + 59T^{2} \) |
| 61 | \( 1 + 5.61T + 61T^{2} \) |
| 67 | \( 1 + (9.52 - 9.52i)T - 67iT^{2} \) |
| 71 | \( 1 + 12.5iT - 71T^{2} \) |
| 73 | \( 1 + (7.83 + 7.83i)T + 73iT^{2} \) |
| 79 | \( 1 - 13.0iT - 79T^{2} \) |
| 83 | \( 1 + (1.55 - 1.55i)T - 83iT^{2} \) |
| 89 | \( 1 - 1.83T + 89T^{2} \) |
| 97 | \( 1 + (6.81 - 6.81i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77495917094330314716060643966, −9.340613370746430964380481111424, −8.971077729220026309686996495452, −7.76322381596607964975623771400, −6.97413300097876765005987907090, −6.20814897033465724495035095906, −4.69234153415268475234577732636, −4.25706306457452650337733156177, −2.96542403596907114849743264320, −1.21201516504585331060513967772,
0.15534286686221665957594605791, 1.67585923749849288414904644371, 3.68881462027782451109880295802, 4.56715047100407031314581413677, 5.73535226770124174950451969718, 6.35507273721137551024460432876, 7.27035331674448780101813171405, 8.181979096993215845690170699141, 8.581786723237221893749693018231, 10.11939281704298507629858337570