L(s) = 1 | + (−0.809 − 0.587i)3-s + (0.309 − 0.951i)4-s + (−0.5 + 1.53i)7-s + (0.309 + 0.951i)9-s + (−0.809 + 0.587i)12-s + (−0.5 − 0.363i)13-s + (−0.809 − 0.587i)16-s + (−0.5 + 0.363i)19-s + (1.30 − 0.951i)21-s + 25-s + (0.309 − 0.951i)27-s + (1.30 + 0.951i)28-s + (−0.809 − 0.587i)31-s + 36-s − 1.61·37-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)3-s + (0.309 − 0.951i)4-s + (−0.5 + 1.53i)7-s + (0.309 + 0.951i)9-s + (−0.809 + 0.587i)12-s + (−0.5 − 0.363i)13-s + (−0.809 − 0.587i)16-s + (−0.5 + 0.363i)19-s + (1.30 − 0.951i)21-s + 25-s + (0.309 − 0.951i)27-s + (1.30 + 0.951i)28-s + (−0.809 − 0.587i)31-s + 36-s − 1.61·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.817 + 0.575i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.817 + 0.575i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4619018582\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4619018582\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.809 + 0.587i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
good | 2 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 5 | \( 1 - T^{2} \) |
| 7 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 11 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + 1.61T + T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 47 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 - 0.618T + T^{2} \) |
| 67 | \( 1 - 0.618T + T^{2} \) |
| 71 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.29554481691611927434390427375, −12.82898227684058972867745113271, −12.14890250289572350156878735868, −11.07675431074072360555066141752, −10.03532261497939277822132745853, −8.771530581454348144572623938258, −7.05804596571881808973016571167, −5.95144901391539568473880923115, −5.22099923391254890010555720139, −2.26669821585936102709468412872,
3.52379163668022342736277136955, 4.63388359943371166320155636122, 6.60718084941818390355171763636, 7.34947433847167642766250330443, 9.045382814740218732932819683367, 10.36797757186280028933745907370, 11.08431803071120187695208329795, 12.29045956804221355094943948134, 13.11029899315600657378924914600, 14.39792191631534296286288651217