L(s) = 1 | + 4·7-s − 3·9-s + 6·11-s − 2·13-s − 6·17-s − 6·19-s − 5·25-s − 6·29-s + 8·37-s + 6·41-s − 2·43-s + 8·47-s + 9·49-s + 8·53-s − 4·59-s + 4·61-s − 12·63-s + 2·67-s + 8·71-s + 6·73-s + 24·77-s + 12·79-s + 9·81-s + 10·83-s − 10·89-s − 8·91-s + 18·97-s + ⋯ |
L(s) = 1 | + 1.51·7-s − 9-s + 1.80·11-s − 0.554·13-s − 1.45·17-s − 1.37·19-s − 25-s − 1.11·29-s + 1.31·37-s + 0.937·41-s − 0.304·43-s + 1.16·47-s + 9/7·49-s + 1.09·53-s − 0.520·59-s + 0.512·61-s − 1.51·63-s + 0.244·67-s + 0.949·71-s + 0.702·73-s + 2.73·77-s + 1.35·79-s + 81-s + 1.09·83-s − 1.05·89-s − 0.838·91-s + 1.82·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.166839747\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.166839747\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + p T^{2} \) |
| 5 | \( 1 + p T^{2} \) |
| 7 | \( 1 - 4 T + p T^{2} \) |
| 11 | \( 1 - 6 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 - 8 T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 + 2 T + p T^{2} \) |
| 47 | \( 1 - 8 T + p T^{2} \) |
| 53 | \( 1 - 8 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 - 4 T + p T^{2} \) |
| 67 | \( 1 - 2 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 - 6 T + p T^{2} \) |
| 79 | \( 1 - 12 T + p T^{2} \) |
| 83 | \( 1 - 10 T + p T^{2} \) |
| 89 | \( 1 + 10 T + p T^{2} \) |
| 97 | \( 1 - 18 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.88275172212662529718935320804, −7.12215770573469452204764289719, −6.31794728224552061674997830487, −5.83889874588837848039864152241, −4.86960562273965900874807329669, −4.26139031601361570641327369181, −3.74802709469702578891182432528, −2.22218726576857343025359090971, −2.04834124149193237989954884291, −0.71223296406190722369687895320,
0.71223296406190722369687895320, 2.04834124149193237989954884291, 2.22218726576857343025359090971, 3.74802709469702578891182432528, 4.26139031601361570641327369181, 4.86960562273965900874807329669, 5.83889874588837848039864152241, 6.31794728224552061674997830487, 7.12215770573469452204764289719, 7.88275172212662529718935320804