Properties

Label 2-92e2-1.1-c1-0-75
Degree $2$
Conductor $8464$
Sign $1$
Analytic cond. $67.5853$
Root an. cond. $8.22103$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 3·9-s + 6·11-s − 2·13-s − 6·17-s − 6·19-s − 5·25-s − 6·29-s + 8·37-s + 6·41-s − 2·43-s + 8·47-s + 9·49-s + 8·53-s − 4·59-s + 4·61-s − 12·63-s + 2·67-s + 8·71-s + 6·73-s + 24·77-s + 12·79-s + 9·81-s + 10·83-s − 10·89-s − 8·91-s + 18·97-s + ⋯
L(s)  = 1  + 1.51·7-s − 9-s + 1.80·11-s − 0.554·13-s − 1.45·17-s − 1.37·19-s − 25-s − 1.11·29-s + 1.31·37-s + 0.937·41-s − 0.304·43-s + 1.16·47-s + 9/7·49-s + 1.09·53-s − 0.520·59-s + 0.512·61-s − 1.51·63-s + 0.244·67-s + 0.949·71-s + 0.702·73-s + 2.73·77-s + 1.35·79-s + 81-s + 1.09·83-s − 1.05·89-s − 0.838·91-s + 1.82·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8464\)    =    \(2^{4} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(67.5853\)
Root analytic conductor: \(8.22103\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8464,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.166839747\)
\(L(\frac12)\) \(\approx\) \(2.166839747\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 + p T^{2} \)
5 \( 1 + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 - 10 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.88275172212662529718935320804, −7.12215770573469452204764289719, −6.31794728224552061674997830487, −5.83889874588837848039864152241, −4.86960562273965900874807329669, −4.26139031601361570641327369181, −3.74802709469702578891182432528, −2.22218726576857343025359090971, −2.04834124149193237989954884291, −0.71223296406190722369687895320, 0.71223296406190722369687895320, 2.04834124149193237989954884291, 2.22218726576857343025359090971, 3.74802709469702578891182432528, 4.26139031601361570641327369181, 4.86960562273965900874807329669, 5.83889874588837848039864152241, 6.31794728224552061674997830487, 7.12215770573469452204764289719, 7.88275172212662529718935320804

Graph of the $Z$-function along the critical line