L(s) = 1 | − 1.56·3-s − 2·5-s − 0.561·9-s − 3.12·11-s + 0.438·13-s + 3.12·15-s − 5.12·17-s − 3.12·19-s − 25-s + 5.56·27-s + 3.56·29-s + 2.43·31-s + 4.87·33-s − 8.24·37-s − 0.684·39-s − 9.80·41-s − 8·43-s + 1.12·45-s + 0.684·47-s − 7·49-s + 8·51-s − 2·53-s + 6.24·55-s + 4.87·57-s − 10.2·59-s + 4.24·61-s − 0.876·65-s + ⋯ |
L(s) = 1 | − 0.901·3-s − 0.894·5-s − 0.187·9-s − 0.941·11-s + 0.121·13-s + 0.806·15-s − 1.24·17-s − 0.716·19-s − 0.200·25-s + 1.07·27-s + 0.661·29-s + 0.437·31-s + 0.848·33-s − 1.35·37-s − 0.109·39-s − 1.53·41-s − 1.21·43-s + 0.167·45-s + 0.0998·47-s − 49-s + 1.12·51-s − 0.274·53-s + 0.842·55-s + 0.645·57-s − 1.33·59-s + 0.543·61-s − 0.108·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.06382133829\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.06382133829\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + 1.56T + 3T^{2} \) |
| 5 | \( 1 + 2T + 5T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 + 3.12T + 11T^{2} \) |
| 13 | \( 1 - 0.438T + 13T^{2} \) |
| 17 | \( 1 + 5.12T + 17T^{2} \) |
| 19 | \( 1 + 3.12T + 19T^{2} \) |
| 29 | \( 1 - 3.56T + 29T^{2} \) |
| 31 | \( 1 - 2.43T + 31T^{2} \) |
| 37 | \( 1 + 8.24T + 37T^{2} \) |
| 41 | \( 1 + 9.80T + 41T^{2} \) |
| 43 | \( 1 + 8T + 43T^{2} \) |
| 47 | \( 1 - 0.684T + 47T^{2} \) |
| 53 | \( 1 + 2T + 53T^{2} \) |
| 59 | \( 1 + 10.2T + 59T^{2} \) |
| 61 | \( 1 - 4.24T + 61T^{2} \) |
| 67 | \( 1 - 3.12T + 67T^{2} \) |
| 71 | \( 1 + 13.5T + 71T^{2} \) |
| 73 | \( 1 + 14.6T + 73T^{2} \) |
| 79 | \( 1 - 3.12T + 79T^{2} \) |
| 83 | \( 1 - 14.2T + 83T^{2} \) |
| 89 | \( 1 + 11.3T + 89T^{2} \) |
| 97 | \( 1 + 11.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.85659029829258928502662653567, −6.89679656369428960862380703837, −6.51664671771786227175236908413, −5.69937149134438649691768488819, −4.90028860211417688318632747425, −4.51960436590143837754952749105, −3.50838920432675610128730631649, −2.73978509636157557045997400230, −1.66225372085762921514764712797, −0.12511440987640091051321498059,
0.12511440987640091051321498059, 1.66225372085762921514764712797, 2.73978509636157557045997400230, 3.50838920432675610128730631649, 4.51960436590143837754952749105, 4.90028860211417688318632747425, 5.69937149134438649691768488819, 6.51664671771786227175236908413, 6.89679656369428960862380703837, 7.85659029829258928502662653567