L(s) = 1 | − 5-s + 2·7-s − 3·9-s − 4·11-s + 6·13-s − 4·17-s + 4·19-s − 6·23-s + 25-s + 29-s − 2·35-s + 8·37-s − 2·41-s + 4·43-s + 3·45-s + 4·47-s − 3·49-s + 2·53-s + 4·55-s + 8·59-s − 10·61-s − 6·63-s − 6·65-s − 10·67-s + 8·71-s − 8·77-s − 8·79-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.755·7-s − 9-s − 1.20·11-s + 1.66·13-s − 0.970·17-s + 0.917·19-s − 1.25·23-s + 1/5·25-s + 0.185·29-s − 0.338·35-s + 1.31·37-s − 0.312·41-s + 0.609·43-s + 0.447·45-s + 0.583·47-s − 3/7·49-s + 0.274·53-s + 0.539·55-s + 1.04·59-s − 1.28·61-s − 0.755·63-s − 0.744·65-s − 1.22·67-s + 0.949·71-s − 0.911·77-s − 0.900·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 29 | \( 1 - T \) |
good | 3 | \( 1 + p T^{2} \) |
| 7 | \( 1 - 2 T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 - 6 T + p T^{2} \) |
| 17 | \( 1 + 4 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 - 8 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 - 4 T + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 - 8 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 + 10 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 + 6 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 + 12 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.73015145039495539094981795865, −6.60827039429024533138713596102, −5.89761389384708710568132550414, −5.41645064806692310338510257286, −4.54965233119689157124919449851, −3.87636031107587333275595917386, −2.99855691274828446659071177085, −2.28421215545760451830644600134, −1.17537749867092701167098614315, 0,
1.17537749867092701167098614315, 2.28421215545760451830644600134, 2.99855691274828446659071177085, 3.87636031107587333275595917386, 4.54965233119689157124919449851, 5.41645064806692310338510257286, 5.89761389384708710568132550414, 6.60827039429024533138713596102, 7.73015145039495539094981795865