Properties

Label 2-9280-1.1-c1-0-109
Degree $2$
Conductor $9280$
Sign $1$
Analytic cond. $74.1011$
Root an. cond. $8.60820$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.71·3-s − 5-s + 2.39·7-s − 0.0460·9-s + 4.78·11-s + 4.50·13-s − 1.71·15-s + 0.391·17-s − 3.43·19-s + 4.11·21-s + 1.71·23-s + 25-s − 5.23·27-s − 29-s + 3.73·31-s + 8.22·33-s − 2.39·35-s − 2.78·37-s + 7.73·39-s + 6.78·41-s + 11.9·43-s + 0.0460·45-s + 8·47-s − 1.28·49-s + 0.672·51-s + 5.17·53-s − 4.78·55-s + ⋯
L(s)  = 1  + 0.992·3-s − 0.447·5-s + 0.903·7-s − 0.0153·9-s + 1.44·11-s + 1.24·13-s − 0.443·15-s + 0.0949·17-s − 0.788·19-s + 0.896·21-s + 0.358·23-s + 0.200·25-s − 1.00·27-s − 0.185·29-s + 0.671·31-s + 1.43·33-s − 0.404·35-s − 0.457·37-s + 1.23·39-s + 1.05·41-s + 1.82·43-s + 0.00686·45-s + 1.16·47-s − 0.183·49-s + 0.0941·51-s + 0.710·53-s − 0.644·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9280\)    =    \(2^{6} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(74.1011\)
Root analytic conductor: \(8.60820\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.720493420\)
\(L(\frac12)\) \(\approx\) \(3.720493420\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 + T \)
good3 \( 1 - 1.71T + 3T^{2} \)
7 \( 1 - 2.39T + 7T^{2} \)
11 \( 1 - 4.78T + 11T^{2} \)
13 \( 1 - 4.50T + 13T^{2} \)
17 \( 1 - 0.391T + 17T^{2} \)
19 \( 1 + 3.43T + 19T^{2} \)
23 \( 1 - 1.71T + 23T^{2} \)
31 \( 1 - 3.73T + 31T^{2} \)
37 \( 1 + 2.78T + 37T^{2} \)
41 \( 1 - 6.78T + 41T^{2} \)
43 \( 1 - 11.9T + 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 - 5.17T + 53T^{2} \)
59 \( 1 + 9.93T + 59T^{2} \)
61 \( 1 + 3.71T + 61T^{2} \)
67 \( 1 + 6.87T + 67T^{2} \)
71 \( 1 + 6.87T + 71T^{2} \)
73 \( 1 - 5.70T + 73T^{2} \)
79 \( 1 + 9.19T + 79T^{2} \)
83 \( 1 + 4.56T + 83T^{2} \)
89 \( 1 - 15.0T + 89T^{2} \)
97 \( 1 - 9.06T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74126349950501462541562855200, −7.30987852720535711114732358667, −6.25142660006835021157595750352, −5.87621415904327773150768133943, −4.64921311946167547257563125512, −4.08514699226180729474388391921, −3.54608199143841908442437293087, −2.65717274648494185680226972208, −1.73990549438417072473097870768, −0.948241449822171624294540680858, 0.948241449822171624294540680858, 1.73990549438417072473097870768, 2.65717274648494185680226972208, 3.54608199143841908442437293087, 4.08514699226180729474388391921, 4.64921311946167547257563125512, 5.87621415904327773150768133943, 6.25142660006835021157595750352, 7.30987852720535711114732358667, 7.74126349950501462541562855200

Graph of the $Z$-function along the critical line