L(s) = 1 | + 2-s + (−1 + i)3-s − 4-s + (−1 + i)6-s + (3 − 3i)7-s − 3·8-s + i·9-s + 2i·11-s + (1 − i)12-s − 2·13-s + (3 − 3i)14-s − 16-s + 4i·17-s + i·18-s + (3 + 3i)19-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (−0.577 + 0.577i)3-s − 0.5·4-s + (−0.408 + 0.408i)6-s + (1.13 − 1.13i)7-s − 1.06·8-s + 0.333i·9-s + 0.603i·11-s + (0.288 − 0.288i)12-s − 0.554·13-s + (0.801 − 0.801i)14-s − 0.250·16-s + 0.970i·17-s + 0.235i·18-s + (0.688 + 0.688i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0158 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0158 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.994103 + 1.01003i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.994103 + 1.01003i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 + (-1 - 6i)T \) |
good | 2 | \( 1 - T + 2T^{2} \) |
| 3 | \( 1 + (1 - i)T - 3iT^{2} \) |
| 7 | \( 1 + (-3 + 3i)T - 7iT^{2} \) |
| 11 | \( 1 - 2iT - 11T^{2} \) |
| 13 | \( 1 + 2T + 13T^{2} \) |
| 17 | \( 1 - 4iT - 17T^{2} \) |
| 19 | \( 1 + (-3 - 3i)T + 19iT^{2} \) |
| 23 | \( 1 - 8T + 23T^{2} \) |
| 29 | \( 1 + (7 - 7i)T - 29iT^{2} \) |
| 31 | \( 1 + (-3 - 3i)T + 31iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 12T + 43T^{2} \) |
| 47 | \( 1 + (5 - 5i)T - 47iT^{2} \) |
| 53 | \( 1 + (-3 - 3i)T + 53iT^{2} \) |
| 59 | \( 1 + (-7 - 7i)T + 59iT^{2} \) |
| 61 | \( 1 + (-1 - i)T + 61iT^{2} \) |
| 67 | \( 1 + (3 + 3i)T + 67iT^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + (1 - i)T - 73iT^{2} \) |
| 79 | \( 1 + (-3 - 3i)T + 79iT^{2} \) |
| 83 | \( 1 + (-5 - 5i)T + 83iT^{2} \) |
| 89 | \( 1 + (-5 + 5i)T - 89iT^{2} \) |
| 97 | \( 1 + 8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36064411301665304608862811310, −9.716834704066526040423319756452, −8.562738078495050675934083390182, −7.72421514620521137727135521916, −6.82110386031872740768304699598, −5.43443841568821475809739782313, −4.93441539089070830944985017230, −4.33800225605344126432721724490, −3.34474249918042278093347192068, −1.46757420986876449562073027714,
0.62730601236028749827165058491, 2.35822040831558650167755421969, 3.51225529781775833170540860983, 5.03574541911461831534542273599, 5.19772248993176353649746483620, 6.16533800907379519059950500906, 7.17555806445055832104720949487, 8.198988079779502516560133945599, 9.092096962415640318575093717439, 9.585596485488115110706128554659