L(s) = 1 | + 2.42i·2-s + (−1.67 + 1.67i)3-s − 3.90·4-s + (−4.06 − 4.06i)6-s + (−1.37 + 1.37i)7-s − 4.62i·8-s − 2.60i·9-s − 4.19i·11-s + (6.52 − 6.52i)12-s − 3.09i·13-s + (−3.34 − 3.34i)14-s + 3.42·16-s + 4.21·17-s + 6.31·18-s + (−2.00 + 2.00i)19-s + ⋯ |
L(s) = 1 | + 1.71i·2-s + (−0.966 + 0.966i)3-s − 1.95·4-s + (−1.65 − 1.65i)6-s + (−0.519 + 0.519i)7-s − 1.63i·8-s − 0.866i·9-s − 1.26i·11-s + (1.88 − 1.88i)12-s − 0.859i·13-s + (−0.893 − 0.893i)14-s + 0.855·16-s + 1.02·17-s + 1.48·18-s + (−0.459 + 0.459i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.708 - 0.705i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.708 - 0.705i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.324724 + 0.134134i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.324724 + 0.134134i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 + (3.09 + 5.23i)T \) |
good | 2 | \( 1 - 2.42iT - 2T^{2} \) |
| 3 | \( 1 + (1.67 - 1.67i)T - 3iT^{2} \) |
| 7 | \( 1 + (1.37 - 1.37i)T - 7iT^{2} \) |
| 11 | \( 1 + 4.19iT - 11T^{2} \) |
| 13 | \( 1 + 3.09iT - 13T^{2} \) |
| 17 | \( 1 - 4.21T + 17T^{2} \) |
| 19 | \( 1 + (2.00 - 2.00i)T - 19iT^{2} \) |
| 23 | \( 1 - 2.97iT - 23T^{2} \) |
| 29 | \( 1 + (6.59 + 6.59i)T + 29iT^{2} \) |
| 31 | \( 1 + (-5.90 + 5.90i)T - 31iT^{2} \) |
| 41 | \( 1 - 3.84iT - 41T^{2} \) |
| 43 | \( 1 - 10.3iT - 43T^{2} \) |
| 47 | \( 1 + (3.77 - 3.77i)T - 47iT^{2} \) |
| 53 | \( 1 + (6.25 + 6.25i)T + 53iT^{2} \) |
| 59 | \( 1 + (-0.919 + 0.919i)T - 59iT^{2} \) |
| 61 | \( 1 + (-0.985 + 0.985i)T - 61iT^{2} \) |
| 67 | \( 1 + (9.13 + 9.13i)T + 67iT^{2} \) |
| 71 | \( 1 - 4.32T + 71T^{2} \) |
| 73 | \( 1 + (-2.68 + 2.68i)T - 73iT^{2} \) |
| 79 | \( 1 + (-2.71 + 2.71i)T - 79iT^{2} \) |
| 83 | \( 1 + (-0.768 - 0.768i)T + 83iT^{2} \) |
| 89 | \( 1 + (10.6 + 10.6i)T + 89iT^{2} \) |
| 97 | \( 1 + 19.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.791736851494414168699672889789, −9.434251503095325987018553146705, −8.167791032335714836506532693612, −7.78606867579194239367608868361, −6.24323658794725418475485677109, −5.92618152584904902252907603037, −5.38395288825596392160941160160, −4.34496463079735813891824293507, −3.27860745827513167663372506481, −0.21529551177470635914654984633,
1.18543315997703843738452585883, 2.06225108962111176162191403438, 3.40461476648079697016895165643, 4.44937261490143313022371262539, 5.36284930142550460920032316267, 6.80572205938311409430338386231, 7.09132741779057161959292589100, 8.578923679348850849193935580471, 9.542977068431193890695053993334, 10.24975858710215834474909958968