L(s) = 1 | + i·2-s + (1 + i)3-s + 4-s + (−1 + i)6-s + (3 + 3i)7-s + 3i·8-s − i·9-s + 2i·11-s + (1 + i)12-s + 2i·13-s + (−3 + 3i)14-s − 16-s − 4·17-s + 18-s + (−3 − 3i)19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (0.577 + 0.577i)3-s + 0.5·4-s + (−0.408 + 0.408i)6-s + (1.13 + 1.13i)7-s + 1.06i·8-s − 0.333i·9-s + 0.603i·11-s + (0.288 + 0.288i)12-s + 0.554i·13-s + (−0.801 + 0.801i)14-s − 0.250·16-s − 0.970·17-s + 0.235·18-s + (−0.688 − 0.688i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.461 - 0.887i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.461 - 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.28721 + 2.12026i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28721 + 2.12026i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 + (6 - i)T \) |
good | 2 | \( 1 - iT - 2T^{2} \) |
| 3 | \( 1 + (-1 - i)T + 3iT^{2} \) |
| 7 | \( 1 + (-3 - 3i)T + 7iT^{2} \) |
| 11 | \( 1 - 2iT - 11T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 + 4T + 17T^{2} \) |
| 19 | \( 1 + (3 + 3i)T + 19iT^{2} \) |
| 23 | \( 1 + 8iT - 23T^{2} \) |
| 29 | \( 1 + (-7 + 7i)T - 29iT^{2} \) |
| 31 | \( 1 + (-3 - 3i)T + 31iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 12iT - 43T^{2} \) |
| 47 | \( 1 + (5 + 5i)T + 47iT^{2} \) |
| 53 | \( 1 + (-3 + 3i)T - 53iT^{2} \) |
| 59 | \( 1 + (7 + 7i)T + 59iT^{2} \) |
| 61 | \( 1 + (-1 - i)T + 61iT^{2} \) |
| 67 | \( 1 + (-3 + 3i)T - 67iT^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + (-1 - i)T + 73iT^{2} \) |
| 79 | \( 1 + (3 + 3i)T + 79iT^{2} \) |
| 83 | \( 1 + (-5 + 5i)T - 83iT^{2} \) |
| 89 | \( 1 + (5 - 5i)T - 89iT^{2} \) |
| 97 | \( 1 - 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29148278287888484959222900612, −9.217992416792939184605974473920, −8.456562380575418703972603460092, −8.174229520824179048202856934599, −6.67827569439679165354248158536, −6.37058785143761647523147099932, −4.89201709379766041711649508464, −4.49344072393122078262140021508, −2.71879321911847734031924670457, −2.06328796973274289544140808536,
1.18948019156111807542453953115, 1.99958803053858330928332945675, 3.17135453686488283845065423486, 4.14400858554233655464090153641, 5.32182023066900790585127695292, 6.65911213018938097791051897353, 7.39074223735103369416879323235, 8.046445727397075377633807426006, 8.812116329072003620362678286001, 10.20249859752394532342813727684