Properties

Label 2-9200-1.1-c1-0-84
Degree $2$
Conductor $9200$
Sign $-1$
Analytic cond. $73.4623$
Root an. cond. $8.57101$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.56·3-s + 3.56·9-s − 5.12·11-s − 4.56·13-s + 3.12·17-s − 5.12·19-s − 23-s − 1.43·27-s − 0.561·29-s + 6.56·31-s + 13.1·33-s + 8.24·37-s + 11.6·39-s + 10.8·41-s − 8·43-s + 11.6·47-s − 7·49-s − 8·51-s − 2·53-s + 13.1·57-s + 6.24·59-s + 12.2·61-s − 5.12·67-s + 2.56·69-s − 9.43·71-s + 2.31·73-s + 5.12·79-s + ⋯
L(s)  = 1  − 1.47·3-s + 1.18·9-s − 1.54·11-s − 1.26·13-s + 0.757·17-s − 1.17·19-s − 0.208·23-s − 0.276·27-s − 0.104·29-s + 1.17·31-s + 2.28·33-s + 1.35·37-s + 1.87·39-s + 1.68·41-s − 1.21·43-s + 1.70·47-s − 49-s − 1.12·51-s − 0.274·53-s + 1.73·57-s + 0.813·59-s + 1.56·61-s − 0.625·67-s + 0.308·69-s − 1.12·71-s + 0.270·73-s + 0.576·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9200\)    =    \(2^{4} \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(73.4623\)
Root analytic conductor: \(8.57101\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + 2.56T + 3T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 + 5.12T + 11T^{2} \)
13 \( 1 + 4.56T + 13T^{2} \)
17 \( 1 - 3.12T + 17T^{2} \)
19 \( 1 + 5.12T + 19T^{2} \)
29 \( 1 + 0.561T + 29T^{2} \)
31 \( 1 - 6.56T + 31T^{2} \)
37 \( 1 - 8.24T + 37T^{2} \)
41 \( 1 - 10.8T + 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 - 11.6T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 6.24T + 59T^{2} \)
61 \( 1 - 12.2T + 61T^{2} \)
67 \( 1 + 5.12T + 67T^{2} \)
71 \( 1 + 9.43T + 71T^{2} \)
73 \( 1 - 2.31T + 73T^{2} \)
79 \( 1 - 5.12T + 79T^{2} \)
83 \( 1 + 2.24T + 83T^{2} \)
89 \( 1 + 13.3T + 89T^{2} \)
97 \( 1 - 13.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.38085088881450108956215160780, −6.54091552914224000872917368841, −5.91852323016016111224414218565, −5.35726456235825819391479947269, −4.76244057870749514570948533916, −4.19565229233611241609677023553, −2.84983340448071890250094770966, −2.25389691794772682973780894451, −0.852952180139238681139519921718, 0, 0.852952180139238681139519921718, 2.25389691794772682973780894451, 2.84983340448071890250094770966, 4.19565229233611241609677023553, 4.76244057870749514570948533916, 5.35726456235825819391479947269, 5.91852323016016111224414218565, 6.54091552914224000872917368841, 7.38085088881450108956215160780

Graph of the $Z$-function along the critical line