L(s) = 1 | − 2.61·3-s − 3.83·7-s + 3.84·9-s + 0.508·11-s + 1.01·13-s + 1.44·17-s + 0.508·19-s + 10.0·21-s + 23-s − 2.22·27-s + 7.51·29-s + 0.439·31-s − 1.32·33-s − 7.02·37-s − 2.64·39-s + 5.47·41-s − 6.72·43-s + 2.64·47-s + 7.72·49-s − 3.78·51-s + 4.77·53-s − 1.32·57-s − 3.85·59-s − 9.05·61-s − 14.7·63-s − 3.45·67-s − 2.61·69-s + ⋯ |
L(s) = 1 | − 1.51·3-s − 1.45·7-s + 1.28·9-s + 0.153·11-s + 0.280·13-s + 0.350·17-s + 0.116·19-s + 2.19·21-s + 0.208·23-s − 0.427·27-s + 1.39·29-s + 0.0788·31-s − 0.231·33-s − 1.15·37-s − 0.423·39-s + 0.854·41-s − 1.02·43-s + 0.385·47-s + 1.10·49-s − 0.530·51-s + 0.656·53-s − 0.176·57-s − 0.501·59-s − 1.15·61-s − 1.86·63-s − 0.422·67-s − 0.315·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6580518214\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6580518214\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 - T \) |
good | 3 | \( 1 + 2.61T + 3T^{2} \) |
| 7 | \( 1 + 3.83T + 7T^{2} \) |
| 11 | \( 1 - 0.508T + 11T^{2} \) |
| 13 | \( 1 - 1.01T + 13T^{2} \) |
| 17 | \( 1 - 1.44T + 17T^{2} \) |
| 19 | \( 1 - 0.508T + 19T^{2} \) |
| 29 | \( 1 - 7.51T + 29T^{2} \) |
| 31 | \( 1 - 0.439T + 31T^{2} \) |
| 37 | \( 1 + 7.02T + 37T^{2} \) |
| 41 | \( 1 - 5.47T + 41T^{2} \) |
| 43 | \( 1 + 6.72T + 43T^{2} \) |
| 47 | \( 1 - 2.64T + 47T^{2} \) |
| 53 | \( 1 - 4.77T + 53T^{2} \) |
| 59 | \( 1 + 3.85T + 59T^{2} \) |
| 61 | \( 1 + 9.05T + 61T^{2} \) |
| 67 | \( 1 + 3.45T + 67T^{2} \) |
| 71 | \( 1 - 2.73T + 71T^{2} \) |
| 73 | \( 1 + 9.21T + 73T^{2} \) |
| 79 | \( 1 + 10.5T + 79T^{2} \) |
| 83 | \( 1 - 1.40T + 83T^{2} \) |
| 89 | \( 1 - 6.77T + 89T^{2} \) |
| 97 | \( 1 + 0.313T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.38355977819968294933734008333, −6.83644112582835739398011891625, −6.24782056315439001382498476830, −5.85959866404089254429924339532, −5.07930310277383061237893145191, −4.37163403665008330400782417792, −3.47000379961157082846344424206, −2.77634013419267866210728880715, −1.37978940418338170157355140138, −0.45355131673778959145975104487,
0.45355131673778959145975104487, 1.37978940418338170157355140138, 2.77634013419267866210728880715, 3.47000379961157082846344424206, 4.37163403665008330400782417792, 5.07930310277383061237893145191, 5.85959866404089254429924339532, 6.24782056315439001382498476830, 6.83644112582835739398011891625, 7.38355977819968294933734008333