L(s) = 1 | + 1.93·3-s + 2.38·7-s + 0.735·9-s − 5.33·11-s + 4.53·13-s − 1.81·17-s − 7.00·19-s + 4.60·21-s − 23-s − 4.37·27-s − 0.118·29-s + 0.884·31-s − 10.3·33-s − 7.51·37-s + 8.77·39-s − 1.45·41-s + 10.4·47-s − 1.32·49-s − 3.50·51-s + 9.42·53-s − 13.5·57-s − 7.79·59-s − 2.80·61-s + 1.75·63-s − 3.11·67-s − 1.93·69-s + 13.5·71-s + ⋯ |
L(s) = 1 | + 1.11·3-s + 0.900·7-s + 0.245·9-s − 1.60·11-s + 1.25·13-s − 0.440·17-s − 1.60·19-s + 1.00·21-s − 0.208·23-s − 0.842·27-s − 0.0219·29-s + 0.158·31-s − 1.79·33-s − 1.23·37-s + 1.40·39-s − 0.226·41-s + 1.52·47-s − 0.189·49-s − 0.491·51-s + 1.29·53-s − 1.79·57-s − 1.01·59-s − 0.359·61-s + 0.220·63-s − 0.380·67-s − 0.232·69-s + 1.61·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 + T \) |
good | 3 | \( 1 - 1.93T + 3T^{2} \) |
| 7 | \( 1 - 2.38T + 7T^{2} \) |
| 11 | \( 1 + 5.33T + 11T^{2} \) |
| 13 | \( 1 - 4.53T + 13T^{2} \) |
| 17 | \( 1 + 1.81T + 17T^{2} \) |
| 19 | \( 1 + 7.00T + 19T^{2} \) |
| 29 | \( 1 + 0.118T + 29T^{2} \) |
| 31 | \( 1 - 0.884T + 31T^{2} \) |
| 37 | \( 1 + 7.51T + 37T^{2} \) |
| 41 | \( 1 + 1.45T + 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 - 10.4T + 47T^{2} \) |
| 53 | \( 1 - 9.42T + 53T^{2} \) |
| 59 | \( 1 + 7.79T + 59T^{2} \) |
| 61 | \( 1 + 2.80T + 61T^{2} \) |
| 67 | \( 1 + 3.11T + 67T^{2} \) |
| 71 | \( 1 - 13.5T + 71T^{2} \) |
| 73 | \( 1 + 12.4T + 73T^{2} \) |
| 79 | \( 1 + 6.80T + 79T^{2} \) |
| 83 | \( 1 + 13.5T + 83T^{2} \) |
| 89 | \( 1 - 2.89T + 89T^{2} \) |
| 97 | \( 1 - 1.97T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.65883101044741792956930681883, −6.84162157960168621035114708694, −5.91990354932317692470300897796, −5.33133460967046051894221782919, −4.41913566498602043451403528719, −3.84161892818259136235845065586, −2.88611777185810853705314722059, −2.28563678076206809989920213104, −1.55202244628973474673365463989, 0,
1.55202244628973474673365463989, 2.28563678076206809989920213104, 2.88611777185810853705314722059, 3.84161892818259136235845065586, 4.41913566498602043451403528719, 5.33133460967046051894221782919, 5.91990354932317692470300897796, 6.84162157960168621035114708694, 7.65883101044741792956930681883