L(s) = 1 | + 1.51·3-s − 3.49·7-s − 0.705·9-s + 4.35·11-s − 3.67·13-s + 5.18·17-s − 2.08·19-s − 5.29·21-s + 23-s − 5.61·27-s − 1.24·29-s − 4.82·31-s + 6.59·33-s − 1.04·37-s − 5.57·39-s + 9.05·41-s + 10.4·43-s + 12.8·47-s + 5.24·49-s + 7.85·51-s − 9.37·53-s − 3.15·57-s − 14.1·59-s − 9.29·61-s + 2.46·63-s + 4.44·67-s + 1.51·69-s + ⋯ |
L(s) = 1 | + 0.874·3-s − 1.32·7-s − 0.235·9-s + 1.31·11-s − 1.02·13-s + 1.25·17-s − 0.478·19-s − 1.15·21-s + 0.208·23-s − 1.08·27-s − 0.231·29-s − 0.866·31-s + 1.14·33-s − 0.171·37-s − 0.892·39-s + 1.41·41-s + 1.60·43-s + 1.87·47-s + 0.748·49-s + 1.09·51-s − 1.28·53-s − 0.418·57-s − 1.84·59-s − 1.19·61-s + 0.311·63-s + 0.542·67-s + 0.182·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 - T \) |
good | 3 | \( 1 - 1.51T + 3T^{2} \) |
| 7 | \( 1 + 3.49T + 7T^{2} \) |
| 11 | \( 1 - 4.35T + 11T^{2} \) |
| 13 | \( 1 + 3.67T + 13T^{2} \) |
| 17 | \( 1 - 5.18T + 17T^{2} \) |
| 19 | \( 1 + 2.08T + 19T^{2} \) |
| 29 | \( 1 + 1.24T + 29T^{2} \) |
| 31 | \( 1 + 4.82T + 31T^{2} \) |
| 37 | \( 1 + 1.04T + 37T^{2} \) |
| 41 | \( 1 - 9.05T + 41T^{2} \) |
| 43 | \( 1 - 10.4T + 43T^{2} \) |
| 47 | \( 1 - 12.8T + 47T^{2} \) |
| 53 | \( 1 + 9.37T + 53T^{2} \) |
| 59 | \( 1 + 14.1T + 59T^{2} \) |
| 61 | \( 1 + 9.29T + 61T^{2} \) |
| 67 | \( 1 - 4.44T + 67T^{2} \) |
| 71 | \( 1 + 2.45T + 71T^{2} \) |
| 73 | \( 1 - 13.2T + 73T^{2} \) |
| 79 | \( 1 + 7.72T + 79T^{2} \) |
| 83 | \( 1 + 2.97T + 83T^{2} \) |
| 89 | \( 1 + 14.6T + 89T^{2} \) |
| 97 | \( 1 + 9.37T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.50082525196424893406128612657, −6.75283205080999265409689768972, −6.02921502365281760449774099461, −5.50678793860975131984294390867, −4.27853678532119686972122076612, −3.74492555172337682154188545436, −2.99665871571898703249447848744, −2.46800617889514193498795896437, −1.29758010873196924005273091282, 0,
1.29758010873196924005273091282, 2.46800617889514193498795896437, 2.99665871571898703249447848744, 3.74492555172337682154188545436, 4.27853678532119686972122076612, 5.50678793860975131984294390867, 6.02921502365281760449774099461, 6.75283205080999265409689768972, 7.50082525196424893406128612657