Properties

Label 2-9200-1.1-c1-0-151
Degree $2$
Conductor $9200$
Sign $-1$
Analytic cond. $73.4623$
Root an. cond. $8.57101$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.93·3-s + 4.93·7-s + 0.745·9-s − 0.745·11-s − 1.74·13-s + 6.10·17-s − 5.44·19-s − 9.55·21-s − 23-s + 4.36·27-s − 1.66·29-s + 1.61·31-s + 1.44·33-s − 4.34·37-s + 3.37·39-s − 6.95·41-s + 5.01·43-s + 2.68·47-s + 17.3·49-s − 11.8·51-s − 13.7·53-s + 10.5·57-s − 12.2·59-s − 13.9·61-s + 3.68·63-s + 13.1·67-s + 1.93·69-s + ⋯
L(s)  = 1  − 1.11·3-s + 1.86·7-s + 0.248·9-s − 0.224·11-s − 0.484·13-s + 1.48·17-s − 1.24·19-s − 2.08·21-s − 0.208·23-s + 0.839·27-s − 0.309·29-s + 0.290·31-s + 0.251·33-s − 0.714·37-s + 0.541·39-s − 1.08·41-s + 0.764·43-s + 0.391·47-s + 2.47·49-s − 1.65·51-s − 1.88·53-s + 1.39·57-s − 1.59·59-s − 1.78·61-s + 0.463·63-s + 1.60·67-s + 0.232·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9200\)    =    \(2^{4} \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(73.4623\)
Root analytic conductor: \(8.57101\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + 1.93T + 3T^{2} \)
7 \( 1 - 4.93T + 7T^{2} \)
11 \( 1 + 0.745T + 11T^{2} \)
13 \( 1 + 1.74T + 13T^{2} \)
17 \( 1 - 6.10T + 17T^{2} \)
19 \( 1 + 5.44T + 19T^{2} \)
29 \( 1 + 1.66T + 29T^{2} \)
31 \( 1 - 1.61T + 31T^{2} \)
37 \( 1 + 4.34T + 37T^{2} \)
41 \( 1 + 6.95T + 41T^{2} \)
43 \( 1 - 5.01T + 43T^{2} \)
47 \( 1 - 2.68T + 47T^{2} \)
53 \( 1 + 13.7T + 53T^{2} \)
59 \( 1 + 12.2T + 59T^{2} \)
61 \( 1 + 13.9T + 61T^{2} \)
67 \( 1 - 13.1T + 67T^{2} \)
71 \( 1 - 9.67T + 71T^{2} \)
73 \( 1 + 5.69T + 73T^{2} \)
79 \( 1 + 10.3T + 79T^{2} \)
83 \( 1 - 0.637T + 83T^{2} \)
89 \( 1 - 2.72T + 89T^{2} \)
97 \( 1 + 7.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47845735292857282554698880541, −6.58981323436836494988054909277, −5.85092891332814667371692863201, −5.26156176306277426334415791247, −4.81117147513546292996099574048, −4.15501021410677084412599308786, −2.99815459700554336548357278255, −1.92842769489741180356638623242, −1.22407895817105925552455838356, 0, 1.22407895817105925552455838356, 1.92842769489741180356638623242, 2.99815459700554336548357278255, 4.15501021410677084412599308786, 4.81117147513546292996099574048, 5.26156176306277426334415791247, 5.85092891332814667371692863201, 6.58981323436836494988054909277, 7.47845735292857282554698880541

Graph of the $Z$-function along the critical line