L(s) = 1 | − 1.93·3-s + 4.93·7-s + 0.745·9-s − 0.745·11-s − 1.74·13-s + 6.10·17-s − 5.44·19-s − 9.55·21-s − 23-s + 4.36·27-s − 1.66·29-s + 1.61·31-s + 1.44·33-s − 4.34·37-s + 3.37·39-s − 6.95·41-s + 5.01·43-s + 2.68·47-s + 17.3·49-s − 11.8·51-s − 13.7·53-s + 10.5·57-s − 12.2·59-s − 13.9·61-s + 3.68·63-s + 13.1·67-s + 1.93·69-s + ⋯ |
L(s) = 1 | − 1.11·3-s + 1.86·7-s + 0.248·9-s − 0.224·11-s − 0.484·13-s + 1.48·17-s − 1.24·19-s − 2.08·21-s − 0.208·23-s + 0.839·27-s − 0.309·29-s + 0.290·31-s + 0.251·33-s − 0.714·37-s + 0.541·39-s − 1.08·41-s + 0.764·43-s + 0.391·47-s + 2.47·49-s − 1.65·51-s − 1.88·53-s + 1.39·57-s − 1.59·59-s − 1.78·61-s + 0.463·63-s + 1.60·67-s + 0.232·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 + T \) |
good | 3 | \( 1 + 1.93T + 3T^{2} \) |
| 7 | \( 1 - 4.93T + 7T^{2} \) |
| 11 | \( 1 + 0.745T + 11T^{2} \) |
| 13 | \( 1 + 1.74T + 13T^{2} \) |
| 17 | \( 1 - 6.10T + 17T^{2} \) |
| 19 | \( 1 + 5.44T + 19T^{2} \) |
| 29 | \( 1 + 1.66T + 29T^{2} \) |
| 31 | \( 1 - 1.61T + 31T^{2} \) |
| 37 | \( 1 + 4.34T + 37T^{2} \) |
| 41 | \( 1 + 6.95T + 41T^{2} \) |
| 43 | \( 1 - 5.01T + 43T^{2} \) |
| 47 | \( 1 - 2.68T + 47T^{2} \) |
| 53 | \( 1 + 13.7T + 53T^{2} \) |
| 59 | \( 1 + 12.2T + 59T^{2} \) |
| 61 | \( 1 + 13.9T + 61T^{2} \) |
| 67 | \( 1 - 13.1T + 67T^{2} \) |
| 71 | \( 1 - 9.67T + 71T^{2} \) |
| 73 | \( 1 + 5.69T + 73T^{2} \) |
| 79 | \( 1 + 10.3T + 79T^{2} \) |
| 83 | \( 1 - 0.637T + 83T^{2} \) |
| 89 | \( 1 - 2.72T + 89T^{2} \) |
| 97 | \( 1 + 7.12T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.47845735292857282554698880541, −6.58981323436836494988054909277, −5.85092891332814667371692863201, −5.26156176306277426334415791247, −4.81117147513546292996099574048, −4.15501021410677084412599308786, −2.99815459700554336548357278255, −1.92842769489741180356638623242, −1.22407895817105925552455838356, 0,
1.22407895817105925552455838356, 1.92842769489741180356638623242, 2.99815459700554336548357278255, 4.15501021410677084412599308786, 4.81117147513546292996099574048, 5.26156176306277426334415791247, 5.85092891332814667371692863201, 6.58981323436836494988054909277, 7.47845735292857282554698880541