L(s) = 1 | − 1.56·3-s + 2.56·7-s − 0.561·9-s − 2·11-s + 3.56·13-s − 2.56·17-s − 6·19-s − 4·21-s + 23-s + 5.56·27-s + 6.12·29-s − 7.24·31-s + 3.12·33-s + 4.56·37-s − 5.56·39-s + 4.12·41-s + 4.68·47-s − 0.438·49-s + 4·51-s + 4.56·53-s + 9.36·57-s + 3.68·59-s − 7.12·61-s − 1.43·63-s − 8.56·67-s − 1.56·69-s − 10.1·71-s + ⋯ |
L(s) = 1 | − 0.901·3-s + 0.968·7-s − 0.187·9-s − 0.603·11-s + 0.987·13-s − 0.621·17-s − 1.37·19-s − 0.872·21-s + 0.208·23-s + 1.07·27-s + 1.13·29-s − 1.30·31-s + 0.543·33-s + 0.749·37-s − 0.890·39-s + 0.643·41-s + 0.683·47-s − 0.0626·49-s + 0.560·51-s + 0.626·53-s + 1.24·57-s + 0.479·59-s − 0.912·61-s − 0.181·63-s − 1.04·67-s − 0.187·69-s − 1.20·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 - T \) |
good | 3 | \( 1 + 1.56T + 3T^{2} \) |
| 7 | \( 1 - 2.56T + 7T^{2} \) |
| 11 | \( 1 + 2T + 11T^{2} \) |
| 13 | \( 1 - 3.56T + 13T^{2} \) |
| 17 | \( 1 + 2.56T + 17T^{2} \) |
| 19 | \( 1 + 6T + 19T^{2} \) |
| 29 | \( 1 - 6.12T + 29T^{2} \) |
| 31 | \( 1 + 7.24T + 31T^{2} \) |
| 37 | \( 1 - 4.56T + 37T^{2} \) |
| 41 | \( 1 - 4.12T + 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 - 4.68T + 47T^{2} \) |
| 53 | \( 1 - 4.56T + 53T^{2} \) |
| 59 | \( 1 - 3.68T + 59T^{2} \) |
| 61 | \( 1 + 7.12T + 61T^{2} \) |
| 67 | \( 1 + 8.56T + 67T^{2} \) |
| 71 | \( 1 + 10.1T + 71T^{2} \) |
| 73 | \( 1 - 4.43T + 73T^{2} \) |
| 79 | \( 1 + 4.87T + 79T^{2} \) |
| 83 | \( 1 + 13.9T + 83T^{2} \) |
| 89 | \( 1 - 14.2T + 89T^{2} \) |
| 97 | \( 1 - 13.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.34065903525012664241206510011, −6.52873853650608910052064002523, −5.96571217505450556679785822764, −5.40153527856427631922974128368, −4.60238915503192464739791373651, −4.14876561503931504709375167783, −2.95705666258258593086634188239, −2.10789318919179852705781179841, −1.12075480713213196638785670043, 0,
1.12075480713213196638785670043, 2.10789318919179852705781179841, 2.95705666258258593086634188239, 4.14876561503931504709375167783, 4.60238915503192464739791373651, 5.40153527856427631922974128368, 5.96571217505450556679785822764, 6.52873853650608910052064002523, 7.34065903525012664241206510011