Properties

Label 2-9200-1.1-c1-0-133
Degree $2$
Conductor $9200$
Sign $-1$
Analytic cond. $73.4623$
Root an. cond. $8.57101$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.56·3-s + 2.56·7-s − 0.561·9-s − 2·11-s + 3.56·13-s − 2.56·17-s − 6·19-s − 4·21-s + 23-s + 5.56·27-s + 6.12·29-s − 7.24·31-s + 3.12·33-s + 4.56·37-s − 5.56·39-s + 4.12·41-s + 4.68·47-s − 0.438·49-s + 4·51-s + 4.56·53-s + 9.36·57-s + 3.68·59-s − 7.12·61-s − 1.43·63-s − 8.56·67-s − 1.56·69-s − 10.1·71-s + ⋯
L(s)  = 1  − 0.901·3-s + 0.968·7-s − 0.187·9-s − 0.603·11-s + 0.987·13-s − 0.621·17-s − 1.37·19-s − 0.872·21-s + 0.208·23-s + 1.07·27-s + 1.13·29-s − 1.30·31-s + 0.543·33-s + 0.749·37-s − 0.890·39-s + 0.643·41-s + 0.683·47-s − 0.0626·49-s + 0.560·51-s + 0.626·53-s + 1.24·57-s + 0.479·59-s − 0.912·61-s − 0.181·63-s − 1.04·67-s − 0.187·69-s − 1.20·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9200\)    =    \(2^{4} \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(73.4623\)
Root analytic conductor: \(8.57101\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + 1.56T + 3T^{2} \)
7 \( 1 - 2.56T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 - 3.56T + 13T^{2} \)
17 \( 1 + 2.56T + 17T^{2} \)
19 \( 1 + 6T + 19T^{2} \)
29 \( 1 - 6.12T + 29T^{2} \)
31 \( 1 + 7.24T + 31T^{2} \)
37 \( 1 - 4.56T + 37T^{2} \)
41 \( 1 - 4.12T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 - 4.68T + 47T^{2} \)
53 \( 1 - 4.56T + 53T^{2} \)
59 \( 1 - 3.68T + 59T^{2} \)
61 \( 1 + 7.12T + 61T^{2} \)
67 \( 1 + 8.56T + 67T^{2} \)
71 \( 1 + 10.1T + 71T^{2} \)
73 \( 1 - 4.43T + 73T^{2} \)
79 \( 1 + 4.87T + 79T^{2} \)
83 \( 1 + 13.9T + 83T^{2} \)
89 \( 1 - 14.2T + 89T^{2} \)
97 \( 1 - 13.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.34065903525012664241206510011, −6.52873853650608910052064002523, −5.96571217505450556679785822764, −5.40153527856427631922974128368, −4.60238915503192464739791373651, −4.14876561503931504709375167783, −2.95705666258258593086634188239, −2.10789318919179852705781179841, −1.12075480713213196638785670043, 0, 1.12075480713213196638785670043, 2.10789318919179852705781179841, 2.95705666258258593086634188239, 4.14876561503931504709375167783, 4.60238915503192464739791373651, 5.40153527856427631922974128368, 5.96571217505450556679785822764, 6.52873853650608910052064002523, 7.34065903525012664241206510011

Graph of the $Z$-function along the critical line