L(s) = 1 | − 3.08·3-s + 0.555·7-s + 6.50·9-s − 4.65·11-s + 5.02·13-s + 1.32·17-s + 0.196·19-s − 1.71·21-s − 23-s − 10.8·27-s − 0.812·29-s + 2.11·31-s + 14.3·33-s − 5.64·37-s − 15.4·39-s − 4.89·41-s − 1.66·43-s + 9.89·47-s − 6.69·49-s − 4.09·51-s + 2.23·53-s − 0.605·57-s − 2.43·59-s − 5.71·61-s + 3.61·63-s − 6.91·67-s + 3.08·69-s + ⋯ |
L(s) = 1 | − 1.78·3-s + 0.209·7-s + 2.16·9-s − 1.40·11-s + 1.39·13-s + 0.322·17-s + 0.0450·19-s − 0.373·21-s − 0.208·23-s − 2.08·27-s − 0.150·29-s + 0.379·31-s + 2.49·33-s − 0.928·37-s − 2.47·39-s − 0.764·41-s − 0.253·43-s + 1.44·47-s − 0.955·49-s − 0.573·51-s + 0.306·53-s − 0.0802·57-s − 0.316·59-s − 0.731·61-s + 0.455·63-s − 0.845·67-s + 0.371·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 + T \) |
good | 3 | \( 1 + 3.08T + 3T^{2} \) |
| 7 | \( 1 - 0.555T + 7T^{2} \) |
| 11 | \( 1 + 4.65T + 11T^{2} \) |
| 13 | \( 1 - 5.02T + 13T^{2} \) |
| 17 | \( 1 - 1.32T + 17T^{2} \) |
| 19 | \( 1 - 0.196T + 19T^{2} \) |
| 29 | \( 1 + 0.812T + 29T^{2} \) |
| 31 | \( 1 - 2.11T + 31T^{2} \) |
| 37 | \( 1 + 5.64T + 37T^{2} \) |
| 41 | \( 1 + 4.89T + 41T^{2} \) |
| 43 | \( 1 + 1.66T + 43T^{2} \) |
| 47 | \( 1 - 9.89T + 47T^{2} \) |
| 53 | \( 1 - 2.23T + 53T^{2} \) |
| 59 | \( 1 + 2.43T + 59T^{2} \) |
| 61 | \( 1 + 5.71T + 61T^{2} \) |
| 67 | \( 1 + 6.91T + 67T^{2} \) |
| 71 | \( 1 + 0.0120T + 71T^{2} \) |
| 73 | \( 1 - 15.2T + 73T^{2} \) |
| 79 | \( 1 + 10.6T + 79T^{2} \) |
| 83 | \( 1 - 5.64T + 83T^{2} \) |
| 89 | \( 1 - 9.06T + 89T^{2} \) |
| 97 | \( 1 + 14.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.24406889935804031246312243899, −6.50901106938058130417707528417, −5.92264182273457540115269693707, −5.38177149837074582831583366297, −4.86324537357642932784770361188, −4.05094006965036603518216577151, −3.15930873556847764410797117668, −1.89580748099951767006152374662, −0.997775399086921477052086264719, 0,
0.997775399086921477052086264719, 1.89580748099951767006152374662, 3.15930873556847764410797117668, 4.05094006965036603518216577151, 4.86324537357642932784770361188, 5.38177149837074582831583366297, 5.92264182273457540115269693707, 6.50901106938058130417707528417, 7.24406889935804031246312243899