Properties

Label 2-9200-1.1-c1-0-104
Degree $2$
Conductor $9200$
Sign $-1$
Analytic cond. $73.4623$
Root an. cond. $8.57101$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·7-s + 9-s − 5·11-s − 5·13-s − 4·17-s − 19-s − 6·21-s + 23-s + 4·27-s + 9·29-s + 2·31-s + 10·33-s − 2·37-s + 10·39-s + 3·41-s + 7·43-s + 12·47-s + 2·49-s + 8·51-s + 12·53-s + 2·57-s + 6·59-s − 10·61-s + 3·63-s + 8·67-s − 2·69-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.13·7-s + 1/3·9-s − 1.50·11-s − 1.38·13-s − 0.970·17-s − 0.229·19-s − 1.30·21-s + 0.208·23-s + 0.769·27-s + 1.67·29-s + 0.359·31-s + 1.74·33-s − 0.328·37-s + 1.60·39-s + 0.468·41-s + 1.06·43-s + 1.75·47-s + 2/7·49-s + 1.12·51-s + 1.64·53-s + 0.264·57-s + 0.781·59-s − 1.28·61-s + 0.377·63-s + 0.977·67-s − 0.240·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9200\)    =    \(2^{4} \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(73.4623\)
Root analytic conductor: \(8.57101\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{9200} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - 7 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 2 T + p T^{2} \)
73 \( 1 - T + p T^{2} \)
79 \( 1 - 11 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.23367419961639434976874347386, −6.79605833897650723426332827968, −5.73793861966768472871974303382, −5.35263379179179282869941939328, −4.68535313158255414533545755257, −4.32015692814401318756579777963, −2.64934542346709469981154920638, −2.38339433704264829829691281491, −0.972462805090003783209597895285, 0, 0.972462805090003783209597895285, 2.38339433704264829829691281491, 2.64934542346709469981154920638, 4.32015692814401318756579777963, 4.68535313158255414533545755257, 5.35263379179179282869941939328, 5.73793861966768472871974303382, 6.79605833897650723426332827968, 7.23367419961639434976874347386

Graph of the $Z$-function along the critical line