Properties

Label 2-9200-1.1-c1-0-10
Degree $2$
Conductor $9200$
Sign $1$
Analytic cond. $73.4623$
Root an. cond. $8.57101$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 7-s + 9-s + 2·13-s − 5·17-s − 8·19-s + 2·21-s + 23-s + 4·27-s − 5·29-s + 5·31-s + 7·37-s − 4·39-s − 7·41-s − 4·43-s + 2·47-s − 6·49-s + 10·51-s − 53-s + 16·57-s − 3·59-s − 6·61-s − 63-s − 13·67-s − 2·69-s − 13·71-s + 8·73-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.377·7-s + 1/3·9-s + 0.554·13-s − 1.21·17-s − 1.83·19-s + 0.436·21-s + 0.208·23-s + 0.769·27-s − 0.928·29-s + 0.898·31-s + 1.15·37-s − 0.640·39-s − 1.09·41-s − 0.609·43-s + 0.291·47-s − 6/7·49-s + 1.40·51-s − 0.137·53-s + 2.11·57-s − 0.390·59-s − 0.768·61-s − 0.125·63-s − 1.58·67-s − 0.240·69-s − 1.54·71-s + 0.936·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9200\)    =    \(2^{4} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(73.4623\)
Root analytic conductor: \(8.57101\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{9200} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5157800717\)
\(L(\frac12)\) \(\approx\) \(0.5157800717\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 + 7 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 + T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 13 T + p T^{2} \)
71 \( 1 + 13 T + p T^{2} \)
73 \( 1 - 8 T + p T^{2} \)
79 \( 1 - 14 T + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61740417591962582901194978138, −6.71224977744596447447526051161, −6.27201911569989834565020806029, −5.94483975293851586416450649157, −4.83897941359198417242241098670, −4.48912079134868590226289854822, −3.55020406993413560665424356207, −2.56482427318513697789181233058, −1.62500030556551833895154256831, −0.36203022302196198863017700598, 0.36203022302196198863017700598, 1.62500030556551833895154256831, 2.56482427318513697789181233058, 3.55020406993413560665424356207, 4.48912079134868590226289854822, 4.83897941359198417242241098670, 5.94483975293851586416450649157, 6.27201911569989834565020806029, 6.71224977744596447447526051161, 7.61740417591962582901194978138

Graph of the $Z$-function along the critical line