Properties

Label 2-920-184.11-c1-0-86
Degree $2$
Conductor $920$
Sign $-0.660 - 0.751i$
Analytic cond. $7.34623$
Root an. cond. $2.71039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.41 + 0.100i)2-s + (0.472 − 3.28i)3-s + (1.97 − 0.282i)4-s + (−0.959 + 0.281i)5-s + (−0.337 + 4.67i)6-s + (−2.50 − 2.88i)7-s + (−2.76 + 0.597i)8-s + (−7.68 − 2.25i)9-s + (1.32 − 0.493i)10-s + (3.41 − 5.30i)11-s + (0.00647 − 6.63i)12-s + (−2.21 − 1.91i)13-s + (3.81 + 3.82i)14-s + (0.472 + 3.28i)15-s + (3.84 − 1.11i)16-s + (2.31 − 1.05i)17-s + ⋯
L(s)  = 1  + (−0.997 + 0.0708i)2-s + (0.272 − 1.89i)3-s + (0.989 − 0.141i)4-s + (−0.429 + 0.125i)5-s + (−0.137 + 1.91i)6-s + (−0.945 − 1.09i)7-s + (−0.977 + 0.211i)8-s + (−2.56 − 0.751i)9-s + (0.419 − 0.156i)10-s + (1.02 − 1.60i)11-s + (0.00187 − 1.91i)12-s + (−0.613 − 0.531i)13-s + (1.02 + 1.02i)14-s + (0.121 + 0.847i)15-s + (0.960 − 0.279i)16-s + (0.560 − 0.256i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.660 - 0.751i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.660 - 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(920\)    =    \(2^{3} \cdot 5 \cdot 23\)
Sign: $-0.660 - 0.751i$
Analytic conductor: \(7.34623\)
Root analytic conductor: \(2.71039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{920} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 920,\ (\ :1/2),\ -0.660 - 0.751i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.282599 + 0.624482i\)
\(L(\frac12)\) \(\approx\) \(0.282599 + 0.624482i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.41 - 0.100i)T \)
5 \( 1 + (0.959 - 0.281i)T \)
23 \( 1 + (4.07 + 2.53i)T \)
good3 \( 1 + (-0.472 + 3.28i)T + (-2.87 - 0.845i)T^{2} \)
7 \( 1 + (2.50 + 2.88i)T + (-0.996 + 6.92i)T^{2} \)
11 \( 1 + (-3.41 + 5.30i)T + (-4.56 - 10.0i)T^{2} \)
13 \( 1 + (2.21 + 1.91i)T + (1.85 + 12.8i)T^{2} \)
17 \( 1 + (-2.31 + 1.05i)T + (11.1 - 12.8i)T^{2} \)
19 \( 1 + (-4.58 - 2.09i)T + (12.4 + 14.3i)T^{2} \)
29 \( 1 + (2.30 - 1.05i)T + (18.9 - 21.9i)T^{2} \)
31 \( 1 + (-7.20 + 1.03i)T + (29.7 - 8.73i)T^{2} \)
37 \( 1 + (-4.44 - 1.30i)T + (31.1 + 20.0i)T^{2} \)
41 \( 1 + (1.04 - 0.306i)T + (34.4 - 22.1i)T^{2} \)
43 \( 1 + (-2.20 - 0.316i)T + (41.2 + 12.1i)T^{2} \)
47 \( 1 - 3.74iT - 47T^{2} \)
53 \( 1 + (-2.63 - 3.03i)T + (-7.54 + 52.4i)T^{2} \)
59 \( 1 + (6.58 - 7.59i)T + (-8.39 - 58.3i)T^{2} \)
61 \( 1 + (-0.283 - 1.97i)T + (-58.5 + 17.1i)T^{2} \)
67 \( 1 + (4.44 + 6.92i)T + (-27.8 + 60.9i)T^{2} \)
71 \( 1 + (0.130 + 0.202i)T + (-29.4 + 64.5i)T^{2} \)
73 \( 1 + (-1.49 + 3.26i)T + (-47.8 - 55.1i)T^{2} \)
79 \( 1 + (-6.19 + 7.14i)T + (-11.2 - 78.1i)T^{2} \)
83 \( 1 + (-0.562 + 1.91i)T + (-69.8 - 44.8i)T^{2} \)
89 \( 1 + (6.65 + 0.957i)T + (85.3 + 25.0i)T^{2} \)
97 \( 1 + (2.22 + 7.58i)T + (-81.6 + 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.361425101697225417491050744393, −8.450139453245924644926972383213, −7.69265034928861366339118097258, −7.31522770368848026113514210784, −6.30058947101644851409005983034, −5.99496007501306639203940815704, −3.45586444924103745953993394931, −2.84830846884308655617027688394, −1.15771994277299968431706783629, −0.49201931970025052550243156527, 2.30472585116721120033226225581, 3.30653099129145841817607968896, 4.22954461670146501954421836288, 5.31122133201626135021973052516, 6.34291761694492241872905358747, 7.47377282853480623080500801837, 8.531567151176556108555870052181, 9.317168118387951469565870326082, 9.733014401059896654412762489976, 9.984268005500915530492534406379

Graph of the $Z$-function along the critical line