Properties

Label 2-920-184.11-c1-0-45
Degree $2$
Conductor $920$
Sign $0.218 + 0.975i$
Analytic cond. $7.34623$
Root an. cond. $2.71039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.412 − 1.35i)2-s + (−0.429 + 2.98i)3-s + (−1.65 + 1.11i)4-s + (−0.959 + 0.281i)5-s + (4.21 − 0.650i)6-s + (−1.41 − 1.63i)7-s + (2.19 + 1.78i)8-s + (−5.85 − 1.71i)9-s + (0.776 + 1.18i)10-s + (0.260 − 0.405i)11-s + (−2.61 − 5.43i)12-s + (−0.398 − 0.345i)13-s + (−1.62 + 2.58i)14-s + (−0.429 − 2.98i)15-s + (1.51 − 3.70i)16-s + (1.00 − 0.457i)17-s + ⋯
L(s)  = 1  + (−0.291 − 0.956i)2-s + (−0.247 + 1.72i)3-s + (−0.829 + 0.557i)4-s + (−0.429 + 0.125i)5-s + (1.72 − 0.265i)6-s + (−0.534 − 0.616i)7-s + (0.775 + 0.631i)8-s + (−1.95 − 0.572i)9-s + (0.245 + 0.373i)10-s + (0.0786 − 0.122i)11-s + (−0.756 − 1.56i)12-s + (−0.110 − 0.0958i)13-s + (−0.434 + 0.691i)14-s + (−0.110 − 0.770i)15-s + (0.377 − 0.925i)16-s + (0.242 − 0.110i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.218 + 0.975i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.218 + 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(920\)    =    \(2^{3} \cdot 5 \cdot 23\)
Sign: $0.218 + 0.975i$
Analytic conductor: \(7.34623\)
Root analytic conductor: \(2.71039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{920} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 920,\ (\ :1/2),\ 0.218 + 0.975i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.419604 - 0.336116i\)
\(L(\frac12)\) \(\approx\) \(0.419604 - 0.336116i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.412 + 1.35i)T \)
5 \( 1 + (0.959 - 0.281i)T \)
23 \( 1 + (4.73 + 0.773i)T \)
good3 \( 1 + (0.429 - 2.98i)T + (-2.87 - 0.845i)T^{2} \)
7 \( 1 + (1.41 + 1.63i)T + (-0.996 + 6.92i)T^{2} \)
11 \( 1 + (-0.260 + 0.405i)T + (-4.56 - 10.0i)T^{2} \)
13 \( 1 + (0.398 + 0.345i)T + (1.85 + 12.8i)T^{2} \)
17 \( 1 + (-1.00 + 0.457i)T + (11.1 - 12.8i)T^{2} \)
19 \( 1 + (2.30 + 1.05i)T + (12.4 + 14.3i)T^{2} \)
29 \( 1 + (-7.04 + 3.21i)T + (18.9 - 21.9i)T^{2} \)
31 \( 1 + (4.41 - 0.634i)T + (29.7 - 8.73i)T^{2} \)
37 \( 1 + (-3.42 - 1.00i)T + (31.1 + 20.0i)T^{2} \)
41 \( 1 + (-5.07 + 1.49i)T + (34.4 - 22.1i)T^{2} \)
43 \( 1 + (-9.40 - 1.35i)T + (41.2 + 12.1i)T^{2} \)
47 \( 1 - 1.55iT - 47T^{2} \)
53 \( 1 + (0.419 + 0.483i)T + (-7.54 + 52.4i)T^{2} \)
59 \( 1 + (-7.29 + 8.41i)T + (-8.39 - 58.3i)T^{2} \)
61 \( 1 + (1.47 + 10.2i)T + (-58.5 + 17.1i)T^{2} \)
67 \( 1 + (0.346 + 0.538i)T + (-27.8 + 60.9i)T^{2} \)
71 \( 1 + (3.06 + 4.76i)T + (-29.4 + 64.5i)T^{2} \)
73 \( 1 + (-5.17 + 11.3i)T + (-47.8 - 55.1i)T^{2} \)
79 \( 1 + (-1.22 + 1.41i)T + (-11.2 - 78.1i)T^{2} \)
83 \( 1 + (2.13 - 7.27i)T + (-69.8 - 44.8i)T^{2} \)
89 \( 1 + (17.3 + 2.49i)T + (85.3 + 25.0i)T^{2} \)
97 \( 1 + (-4.34 - 14.7i)T + (-81.6 + 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.963027711672142272448198459176, −9.480212240653047655895378572844, −8.585971349542564293511160920170, −7.70584260259758696871884757258, −6.27457952216051161650843452483, −5.06206625870039553925115507888, −4.19174947077776840011000525758, −3.69844769281094413106309317975, −2.67278285411402422523693087941, −0.34543084362487466650022571321, 1.10918821663830267753443905241, 2.50697826156393888577326663721, 4.17469449997119171650034889946, 5.61508778596623089996307719771, 6.08592945493209802504956671509, 6.96640850549163287246925625563, 7.57167309467610515987013197750, 8.357174690999263290954621827919, 8.992474911291140603933924952787, 10.09675520189611017439114529960

Graph of the $Z$-function along the critical line