Properties

Label 2-920-115.17-c1-0-7
Degree $2$
Conductor $920$
Sign $-0.633 - 0.774i$
Analytic cond. $7.34623$
Root an. cond. $2.71039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0410 + 0.0224i)3-s + (−0.288 + 2.21i)5-s + (1.73 + 2.31i)7-s + (−1.62 + 2.52i)9-s + (0.565 − 0.258i)11-s + (−0.890 − 0.666i)13-s + (−0.0378 − 0.0974i)15-s + (−0.149 − 2.08i)17-s + (1.43 + 1.66i)19-s + (−0.122 − 0.0560i)21-s + (−4.23 + 2.25i)23-s + (−4.83 − 1.28i)25-s + (0.0200 − 0.279i)27-s + (−1.86 − 1.61i)29-s + (−8.11 + 2.38i)31-s + ⋯
L(s)  = 1  + (−0.0236 + 0.0129i)3-s + (−0.129 + 0.991i)5-s + (0.654 + 0.873i)7-s + (−0.540 + 0.840i)9-s + (0.170 − 0.0778i)11-s + (−0.246 − 0.184i)13-s + (−0.00976 − 0.0251i)15-s + (−0.0361 − 0.505i)17-s + (0.330 + 0.381i)19-s + (−0.0267 − 0.0122i)21-s + (−0.882 + 0.469i)23-s + (−0.966 − 0.256i)25-s + (0.00384 − 0.0538i)27-s + (−0.347 − 0.300i)29-s + (−1.45 + 0.427i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.633 - 0.774i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.633 - 0.774i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(920\)    =    \(2^{3} \cdot 5 \cdot 23\)
Sign: $-0.633 - 0.774i$
Analytic conductor: \(7.34623\)
Root analytic conductor: \(2.71039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{920} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 920,\ (\ :1/2),\ -0.633 - 0.774i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.511172 + 1.07839i\)
\(L(\frac12)\) \(\approx\) \(0.511172 + 1.07839i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (0.288 - 2.21i)T \)
23 \( 1 + (4.23 - 2.25i)T \)
good3 \( 1 + (0.0410 - 0.0224i)T + (1.62 - 2.52i)T^{2} \)
7 \( 1 + (-1.73 - 2.31i)T + (-1.97 + 6.71i)T^{2} \)
11 \( 1 + (-0.565 + 0.258i)T + (7.20 - 8.31i)T^{2} \)
13 \( 1 + (0.890 + 0.666i)T + (3.66 + 12.4i)T^{2} \)
17 \( 1 + (0.149 + 2.08i)T + (-16.8 + 2.41i)T^{2} \)
19 \( 1 + (-1.43 - 1.66i)T + (-2.70 + 18.8i)T^{2} \)
29 \( 1 + (1.86 + 1.61i)T + (4.12 + 28.7i)T^{2} \)
31 \( 1 + (8.11 - 2.38i)T + (26.0 - 16.7i)T^{2} \)
37 \( 1 + (0.876 - 0.190i)T + (33.6 - 15.3i)T^{2} \)
41 \( 1 + (-6.19 + 3.98i)T + (17.0 - 37.2i)T^{2} \)
43 \( 1 + (-2.73 - 5.01i)T + (-23.2 + 36.1i)T^{2} \)
47 \( 1 + (-1.83 - 1.83i)T + 47iT^{2} \)
53 \( 1 + (-2.56 + 1.91i)T + (14.9 - 50.8i)T^{2} \)
59 \( 1 + (6.13 - 0.881i)T + (56.6 - 16.6i)T^{2} \)
61 \( 1 + (-3.88 - 13.2i)T + (-51.3 + 32.9i)T^{2} \)
67 \( 1 + (-4.76 - 12.7i)T + (-50.6 + 43.8i)T^{2} \)
71 \( 1 + (0.404 - 0.884i)T + (-46.4 - 53.6i)T^{2} \)
73 \( 1 + (-3.80 - 0.272i)T + (72.2 + 10.3i)T^{2} \)
79 \( 1 + (-0.310 - 2.15i)T + (-75.7 + 22.2i)T^{2} \)
83 \( 1 + (-2.23 - 10.2i)T + (-75.4 + 34.4i)T^{2} \)
89 \( 1 + (9.66 + 2.83i)T + (74.8 + 48.1i)T^{2} \)
97 \( 1 + (-2.33 + 10.7i)T + (-88.2 - 40.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.48950796864858107160392987981, −9.586125066792035453358634425059, −8.633053135139509935470334450941, −7.79043193694633177083381897788, −7.17341486942051262908320452365, −5.83102931863586784974898061064, −5.40589124976117085334800088371, −4.06248280053956067279299212164, −2.83414680197457767339290481977, −2.00523153455043365024668070628, 0.55241513355585332235054251681, 1.86907327357860112653865130813, 3.62292156312380217528291606347, 4.35234247392192843087204682927, 5.33089746819251760873042116428, 6.27871534753680256114864259518, 7.39721088737483382484158662249, 8.094431999341647171264307668522, 9.019437996459010877378702280681, 9.570623365337690344380296964899

Graph of the $Z$-function along the critical line