Properties

Label 2-920-1.1-c3-0-48
Degree $2$
Conductor $920$
Sign $-1$
Analytic cond. $54.2817$
Root an. cond. $7.36761$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.160·3-s − 5·5-s − 2.26·7-s − 26.9·9-s − 8.80·11-s + 37.4·13-s − 0.801·15-s + 71.0·17-s + 106.·19-s − 0.362·21-s − 23·23-s + 25·25-s − 8.65·27-s − 10.8·29-s + 42.2·31-s − 1.41·33-s + 11.3·35-s − 140.·37-s + 6.00·39-s + 1.84·41-s − 503.·43-s + 134.·45-s − 219.·47-s − 337.·49-s + 11.3·51-s − 59.4·53-s + 44.0·55-s + ⋯
L(s)  = 1  + 0.0308·3-s − 0.447·5-s − 0.122·7-s − 0.999·9-s − 0.241·11-s + 0.798·13-s − 0.0137·15-s + 1.01·17-s + 1.28·19-s − 0.00376·21-s − 0.208·23-s + 0.200·25-s − 0.0616·27-s − 0.0695·29-s + 0.244·31-s − 0.00744·33-s + 0.0546·35-s − 0.625·37-s + 0.0246·39-s + 0.00703·41-s − 1.78·43-s + 0.446·45-s − 0.680·47-s − 0.985·49-s + 0.0312·51-s − 0.154·53-s + 0.107·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(920\)    =    \(2^{3} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(54.2817\)
Root analytic conductor: \(7.36761\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 920,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
23 \( 1 + 23T \)
good3 \( 1 - 0.160T + 27T^{2} \)
7 \( 1 + 2.26T + 343T^{2} \)
11 \( 1 + 8.80T + 1.33e3T^{2} \)
13 \( 1 - 37.4T + 2.19e3T^{2} \)
17 \( 1 - 71.0T + 4.91e3T^{2} \)
19 \( 1 - 106.T + 6.85e3T^{2} \)
29 \( 1 + 10.8T + 2.43e4T^{2} \)
31 \( 1 - 42.2T + 2.97e4T^{2} \)
37 \( 1 + 140.T + 5.06e4T^{2} \)
41 \( 1 - 1.84T + 6.89e4T^{2} \)
43 \( 1 + 503.T + 7.95e4T^{2} \)
47 \( 1 + 219.T + 1.03e5T^{2} \)
53 \( 1 + 59.4T + 1.48e5T^{2} \)
59 \( 1 + 91.0T + 2.05e5T^{2} \)
61 \( 1 + 93.1T + 2.26e5T^{2} \)
67 \( 1 + 940.T + 3.00e5T^{2} \)
71 \( 1 + 178.T + 3.57e5T^{2} \)
73 \( 1 + 47.2T + 3.89e5T^{2} \)
79 \( 1 - 1.08e3T + 4.93e5T^{2} \)
83 \( 1 - 484.T + 5.71e5T^{2} \)
89 \( 1 + 392.T + 7.04e5T^{2} \)
97 \( 1 + 1.65e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.253939854279693732115502055502, −8.304174480293233280090974729571, −7.79591186889932104941632434728, −6.68370327282760759655966522843, −5.73175702462688106949581519798, −4.97465378152495280524072713397, −3.57032158720735069435598753201, −2.99590893938077346615988920897, −1.37153286218675604085788943349, 0, 1.37153286218675604085788943349, 2.99590893938077346615988920897, 3.57032158720735069435598753201, 4.97465378152495280524072713397, 5.73175702462688106949581519798, 6.68370327282760759655966522843, 7.79591186889932104941632434728, 8.304174480293233280090974729571, 9.253939854279693732115502055502

Graph of the $Z$-function along the critical line