Properties

Label 2-920-1.1-c1-0-4
Degree $2$
Conductor $920$
Sign $1$
Analytic cond. $7.34623$
Root an. cond. $2.71039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.523·3-s − 5-s + 0.476·7-s − 2.72·9-s − 1.67·11-s + 2.67·13-s + 0.523·15-s + 1.67·17-s + 7.92·19-s − 0.249·21-s + 23-s + 25-s + 3·27-s − 2.20·29-s + 6.77·31-s + 0.878·33-s − 0.476·35-s + 4·37-s − 1.40·39-s + 5.97·41-s − 0.402·43-s + 2.72·45-s + 1.79·47-s − 6.77·49-s − 0.878·51-s − 10.8·53-s + 1.67·55-s + ⋯
L(s)  = 1  − 0.302·3-s − 0.447·5-s + 0.179·7-s − 0.908·9-s − 0.505·11-s + 0.742·13-s + 0.135·15-s + 0.406·17-s + 1.81·19-s − 0.0544·21-s + 0.208·23-s + 0.200·25-s + 0.577·27-s − 0.408·29-s + 1.21·31-s + 0.153·33-s − 0.0804·35-s + 0.657·37-s − 0.224·39-s + 0.933·41-s − 0.0614·43-s + 0.406·45-s + 0.262·47-s − 0.967·49-s − 0.123·51-s − 1.48·53-s + 0.226·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(920\)    =    \(2^{3} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(7.34623\)
Root analytic conductor: \(2.71039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 920,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.258313130\)
\(L(\frac12)\) \(\approx\) \(1.258313130\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
23 \( 1 - T \)
good3 \( 1 + 0.523T + 3T^{2} \)
7 \( 1 - 0.476T + 7T^{2} \)
11 \( 1 + 1.67T + 11T^{2} \)
13 \( 1 - 2.67T + 13T^{2} \)
17 \( 1 - 1.67T + 17T^{2} \)
19 \( 1 - 7.92T + 19T^{2} \)
29 \( 1 + 2.20T + 29T^{2} \)
31 \( 1 - 6.77T + 31T^{2} \)
37 \( 1 - 4T + 37T^{2} \)
41 \( 1 - 5.97T + 41T^{2} \)
43 \( 1 + 0.402T + 43T^{2} \)
47 \( 1 - 1.79T + 47T^{2} \)
53 \( 1 + 10.8T + 53T^{2} \)
59 \( 1 - 9.45T + 59T^{2} \)
61 \( 1 - 6.32T + 61T^{2} \)
67 \( 1 - 14.7T + 67T^{2} \)
71 \( 1 - 9.97T + 71T^{2} \)
73 \( 1 + 6.10T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 4.49T + 83T^{2} \)
89 \( 1 + 3.59T + 89T^{2} \)
97 \( 1 + 6.08T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08984429395356211569474448110, −9.268086343846071693191280694678, −8.227255071204510559461661522701, −7.74931592723668786958483191954, −6.60294314336283483139283473760, −5.64340705669167632379914834182, −4.95667437990707476866512516339, −3.64365954942181291161219536478, −2.73648436186003824146470648247, −0.925421902208183046618648672404, 0.925421902208183046618648672404, 2.73648436186003824146470648247, 3.64365954942181291161219536478, 4.95667437990707476866512516339, 5.64340705669167632379914834182, 6.60294314336283483139283473760, 7.74931592723668786958483191954, 8.227255071204510559461661522701, 9.268086343846071693191280694678, 10.08984429395356211569474448110

Graph of the $Z$-function along the critical line