L(s) = 1 | − 1.56·3-s + 5-s − 3.12·7-s − 0.561·9-s − 4·11-s + 3.56·13-s − 1.56·15-s + 5.12·17-s + 4·19-s + 4.87·21-s + 23-s + 25-s + 5.56·27-s − 4.43·29-s + 5.56·31-s + 6.24·33-s − 3.12·35-s + 1.12·37-s − 5.56·39-s − 3.56·41-s − 0.876·43-s − 0.561·45-s + 8.68·47-s + 2.75·49-s − 8·51-s + 12.2·53-s − 4·55-s + ⋯ |
L(s) = 1 | − 0.901·3-s + 0.447·5-s − 1.18·7-s − 0.187·9-s − 1.20·11-s + 0.987·13-s − 0.403·15-s + 1.24·17-s + 0.917·19-s + 1.06·21-s + 0.208·23-s + 0.200·25-s + 1.07·27-s − 0.824·29-s + 0.998·31-s + 1.08·33-s − 0.527·35-s + 0.184·37-s − 0.890·39-s − 0.556·41-s − 0.133·43-s − 0.0837·45-s + 1.26·47-s + 0.393·49-s − 1.12·51-s + 1.68·53-s − 0.539·55-s + ⋯ |
Λ(s)=(=(920s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(920s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9680007920 |
L(21) |
≈ |
0.9680007920 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 23 | 1−T |
good | 3 | 1+1.56T+3T2 |
| 7 | 1+3.12T+7T2 |
| 11 | 1+4T+11T2 |
| 13 | 1−3.56T+13T2 |
| 17 | 1−5.12T+17T2 |
| 19 | 1−4T+19T2 |
| 29 | 1+4.43T+29T2 |
| 31 | 1−5.56T+31T2 |
| 37 | 1−1.12T+37T2 |
| 41 | 1+3.56T+41T2 |
| 43 | 1+0.876T+43T2 |
| 47 | 1−8.68T+47T2 |
| 53 | 1−12.2T+53T2 |
| 59 | 1−10.2T+59T2 |
| 61 | 1−2.87T+61T2 |
| 67 | 1+10.2T+67T2 |
| 71 | 1+8.68T+71T2 |
| 73 | 1−12.4T+73T2 |
| 79 | 1−6.24T+79T2 |
| 83 | 1−12T+83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1−0.246T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.22479266136955488063613525487, −9.445456308088901965682713131926, −8.434560251187830677688666690251, −7.41832271260702522578550728966, −6.42466880405790236018053499478, −5.69534474055076709306143378642, −5.21122514948191233506734493260, −3.60696458038525539065121510260, −2.70859664445996752798783022122, −0.808908830703287407846678614885,
0.808908830703287407846678614885, 2.70859664445996752798783022122, 3.60696458038525539065121510260, 5.21122514948191233506734493260, 5.69534474055076709306143378642, 6.42466880405790236018053499478, 7.41832271260702522578550728966, 8.434560251187830677688666690251, 9.445456308088901965682713131926, 10.22479266136955488063613525487