L(s) = 1 | − 1.56·3-s + 5-s − 3.12·7-s − 0.561·9-s − 4·11-s + 3.56·13-s − 1.56·15-s + 5.12·17-s + 4·19-s + 4.87·21-s + 23-s + 25-s + 5.56·27-s − 4.43·29-s + 5.56·31-s + 6.24·33-s − 3.12·35-s + 1.12·37-s − 5.56·39-s − 3.56·41-s − 0.876·43-s − 0.561·45-s + 8.68·47-s + 2.75·49-s − 8·51-s + 12.2·53-s − 4·55-s + ⋯ |
L(s) = 1 | − 0.901·3-s + 0.447·5-s − 1.18·7-s − 0.187·9-s − 1.20·11-s + 0.987·13-s − 0.403·15-s + 1.24·17-s + 0.917·19-s + 1.06·21-s + 0.208·23-s + 0.200·25-s + 1.07·27-s − 0.824·29-s + 0.998·31-s + 1.08·33-s − 0.527·35-s + 0.184·37-s − 0.890·39-s − 0.556·41-s − 0.133·43-s − 0.0837·45-s + 1.26·47-s + 0.393·49-s − 1.12·51-s + 1.68·53-s − 0.539·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9680007920\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9680007920\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 23 | \( 1 - T \) |
good | 3 | \( 1 + 1.56T + 3T^{2} \) |
| 7 | \( 1 + 3.12T + 7T^{2} \) |
| 11 | \( 1 + 4T + 11T^{2} \) |
| 13 | \( 1 - 3.56T + 13T^{2} \) |
| 17 | \( 1 - 5.12T + 17T^{2} \) |
| 19 | \( 1 - 4T + 19T^{2} \) |
| 29 | \( 1 + 4.43T + 29T^{2} \) |
| 31 | \( 1 - 5.56T + 31T^{2} \) |
| 37 | \( 1 - 1.12T + 37T^{2} \) |
| 41 | \( 1 + 3.56T + 41T^{2} \) |
| 43 | \( 1 + 0.876T + 43T^{2} \) |
| 47 | \( 1 - 8.68T + 47T^{2} \) |
| 53 | \( 1 - 12.2T + 53T^{2} \) |
| 59 | \( 1 - 10.2T + 59T^{2} \) |
| 61 | \( 1 - 2.87T + 61T^{2} \) |
| 67 | \( 1 + 10.2T + 67T^{2} \) |
| 71 | \( 1 + 8.68T + 71T^{2} \) |
| 73 | \( 1 - 12.4T + 73T^{2} \) |
| 79 | \( 1 - 6.24T + 79T^{2} \) |
| 83 | \( 1 - 12T + 83T^{2} \) |
| 89 | \( 1 - 10T + 89T^{2} \) |
| 97 | \( 1 - 0.246T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22479266136955488063613525487, −9.445456308088901965682713131926, −8.434560251187830677688666690251, −7.41832271260702522578550728966, −6.42466880405790236018053499478, −5.69534474055076709306143378642, −5.21122514948191233506734493260, −3.60696458038525539065121510260, −2.70859664445996752798783022122, −0.808908830703287407846678614885,
0.808908830703287407846678614885, 2.70859664445996752798783022122, 3.60696458038525539065121510260, 5.21122514948191233506734493260, 5.69534474055076709306143378642, 6.42466880405790236018053499478, 7.41832271260702522578550728966, 8.434560251187830677688666690251, 9.445456308088901965682713131926, 10.22479266136955488063613525487