L(s) = 1 | + 5-s + 7-s − 3·9-s − 6·11-s − 2·13-s − 3·17-s − 6·19-s + 23-s + 25-s + 3·29-s − 3·31-s + 35-s + 37-s + 9·41-s − 8·43-s − 3·45-s + 4·47-s − 6·49-s + 53-s − 6·55-s + 59-s + 8·61-s − 3·63-s − 2·65-s − 7·67-s − 5·71-s − 6·73-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.377·7-s − 9-s − 1.80·11-s − 0.554·13-s − 0.727·17-s − 1.37·19-s + 0.208·23-s + 1/5·25-s + 0.557·29-s − 0.538·31-s + 0.169·35-s + 0.164·37-s + 1.40·41-s − 1.21·43-s − 0.447·45-s + 0.583·47-s − 6/7·49-s + 0.137·53-s − 0.809·55-s + 0.130·59-s + 1.02·61-s − 0.377·63-s − 0.248·65-s − 0.855·67-s − 0.593·71-s − 0.702·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 23 | \( 1 - T \) |
good | 3 | \( 1 + p T^{2} \) |
| 7 | \( 1 - T + p T^{2} \) |
| 11 | \( 1 + 6 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 3 T + p T^{2} \) |
| 19 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 - 3 T + p T^{2} \) |
| 31 | \( 1 + 3 T + p T^{2} \) |
| 37 | \( 1 - T + p T^{2} \) |
| 41 | \( 1 - 9 T + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 - 4 T + p T^{2} \) |
| 53 | \( 1 - T + p T^{2} \) |
| 59 | \( 1 - T + p T^{2} \) |
| 61 | \( 1 - 8 T + p T^{2} \) |
| 67 | \( 1 + 7 T + p T^{2} \) |
| 71 | \( 1 + 5 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 + p T^{2} \) |
| 83 | \( 1 + 11 T + p T^{2} \) |
| 89 | \( 1 - 4 T + p T^{2} \) |
| 97 | \( 1 - 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.719793890803983388414880190011, −8.661410300024778984260388952057, −8.154667398026092902460197762918, −7.15283392029514147750453891083, −6.06517643516927954263718070849, −5.29049212441887337738875921574, −4.48035335797596217036772667663, −2.86578338743805250129835502182, −2.17864183421830251103873777344, 0,
2.17864183421830251103873777344, 2.86578338743805250129835502182, 4.48035335797596217036772667663, 5.29049212441887337738875921574, 6.06517643516927954263718070849, 7.15283392029514147750453891083, 8.154667398026092902460197762918, 8.661410300024778984260388952057, 9.719793890803983388414880190011