Properties

Label 2-920-1.1-c1-0-20
Degree $2$
Conductor $920$
Sign $-1$
Analytic cond. $7.34623$
Root an. cond. $2.71039$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s − 3·9-s − 6·11-s − 2·13-s − 3·17-s − 6·19-s + 23-s + 25-s + 3·29-s − 3·31-s + 35-s + 37-s + 9·41-s − 8·43-s − 3·45-s + 4·47-s − 6·49-s + 53-s − 6·55-s + 59-s + 8·61-s − 3·63-s − 2·65-s − 7·67-s − 5·71-s − 6·73-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s − 9-s − 1.80·11-s − 0.554·13-s − 0.727·17-s − 1.37·19-s + 0.208·23-s + 1/5·25-s + 0.557·29-s − 0.538·31-s + 0.169·35-s + 0.164·37-s + 1.40·41-s − 1.21·43-s − 0.447·45-s + 0.583·47-s − 6/7·49-s + 0.137·53-s − 0.809·55-s + 0.130·59-s + 1.02·61-s − 0.377·63-s − 0.248·65-s − 0.855·67-s − 0.593·71-s − 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(920\)    =    \(2^{3} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(7.34623\)
Root analytic conductor: \(2.71039\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
23 \( 1 - T \)
good3 \( 1 + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 - T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - T + p T^{2} \)
59 \( 1 - T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 7 T + p T^{2} \)
71 \( 1 + 5 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 11 T + p T^{2} \)
89 \( 1 - 4 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.719793890803983388414880190011, −8.661410300024778984260388952057, −8.154667398026092902460197762918, −7.15283392029514147750453891083, −6.06517643516927954263718070849, −5.29049212441887337738875921574, −4.48035335797596217036772667663, −2.86578338743805250129835502182, −2.17864183421830251103873777344, 0, 2.17864183421830251103873777344, 2.86578338743805250129835502182, 4.48035335797596217036772667663, 5.29049212441887337738875921574, 6.06517643516927954263718070849, 7.15283392029514147750453891083, 8.154667398026092902460197762918, 8.661410300024778984260388952057, 9.719793890803983388414880190011

Graph of the $Z$-function along the critical line