L(s) = 1 | + 2.66·3-s − 5-s + 3.66·7-s + 4.12·9-s − 1.21·11-s + 2.21·13-s − 2.66·15-s + 1.21·17-s − 2.57·19-s + 9.79·21-s + 23-s + 25-s + 3.00·27-s + 1.45·29-s − 6.46·31-s − 3.24·33-s − 3.66·35-s + 4·37-s + 5.90·39-s − 10.9·41-s + 6.90·43-s − 4.12·45-s + 5.45·47-s + 6.46·49-s + 3.24·51-s + 3.81·53-s + 1.21·55-s + ⋯ |
L(s) = 1 | + 1.54·3-s − 0.447·5-s + 1.38·7-s + 1.37·9-s − 0.366·11-s + 0.614·13-s − 0.689·15-s + 0.294·17-s − 0.591·19-s + 2.13·21-s + 0.208·23-s + 0.200·25-s + 0.577·27-s + 0.270·29-s − 1.16·31-s − 0.564·33-s − 0.620·35-s + 0.657·37-s + 0.946·39-s − 1.70·41-s + 1.05·43-s − 0.614·45-s + 0.795·47-s + 0.923·49-s + 0.453·51-s + 0.524·53-s + 0.163·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.824423414\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.824423414\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 23 | \( 1 - T \) |
good | 3 | \( 1 - 2.66T + 3T^{2} \) |
| 7 | \( 1 - 3.66T + 7T^{2} \) |
| 11 | \( 1 + 1.21T + 11T^{2} \) |
| 13 | \( 1 - 2.21T + 13T^{2} \) |
| 17 | \( 1 - 1.21T + 17T^{2} \) |
| 19 | \( 1 + 2.57T + 19T^{2} \) |
| 29 | \( 1 - 1.45T + 29T^{2} \) |
| 31 | \( 1 + 6.46T + 31T^{2} \) |
| 37 | \( 1 - 4T + 37T^{2} \) |
| 41 | \( 1 + 10.9T + 41T^{2} \) |
| 43 | \( 1 - 6.90T + 43T^{2} \) |
| 47 | \( 1 - 5.45T + 47T^{2} \) |
| 53 | \( 1 - 3.81T + 53T^{2} \) |
| 59 | \( 1 + 4.24T + 59T^{2} \) |
| 61 | \( 1 - 6.78T + 61T^{2} \) |
| 67 | \( 1 - 12.8T + 67T^{2} \) |
| 71 | \( 1 + 6.91T + 71T^{2} \) |
| 73 | \( 1 + 15.2T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 15.5T + 83T^{2} \) |
| 89 | \( 1 + 10.9T + 89T^{2} \) |
| 97 | \( 1 - 1.69T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.990020666548238193387097792699, −8.845705517746448356968639695938, −8.476557987426808450293619736966, −7.78037878588799609529744487742, −7.10423350666198208589093060925, −5.60191294919404810413700891064, −4.48558544087594275423064035637, −3.69275157339682111977888467977, −2.58051813204220411644192487717, −1.52725803079340913300722093006,
1.52725803079340913300722093006, 2.58051813204220411644192487717, 3.69275157339682111977888467977, 4.48558544087594275423064035637, 5.60191294919404810413700891064, 7.10423350666198208589093060925, 7.78037878588799609529744487742, 8.476557987426808450293619736966, 8.845705517746448356968639695938, 9.990020666548238193387097792699