L(s) = 1 | + 1.93·3-s − 5-s + 2.38·7-s + 0.735·9-s + 5.33·11-s − 4.53·13-s − 1.93·15-s + 1.81·17-s + 7.00·19-s + 4.60·21-s − 23-s + 25-s − 4.37·27-s − 0.118·29-s − 0.884·31-s + 10.3·33-s − 2.38·35-s + 7.51·37-s − 8.77·39-s − 1.45·41-s − 0.735·45-s + 10.4·47-s − 1.32·49-s + 3.50·51-s − 9.42·53-s − 5.33·55-s + 13.5·57-s + ⋯ |
L(s) = 1 | + 1.11·3-s − 0.447·5-s + 0.900·7-s + 0.245·9-s + 1.60·11-s − 1.25·13-s − 0.499·15-s + 0.440·17-s + 1.60·19-s + 1.00·21-s − 0.208·23-s + 0.200·25-s − 0.842·27-s − 0.0219·29-s − 0.158·31-s + 1.79·33-s − 0.402·35-s + 1.23·37-s − 1.40·39-s − 0.226·41-s − 0.109·45-s + 1.52·47-s − 0.189·49-s + 0.491·51-s − 1.29·53-s − 0.719·55-s + 1.79·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.426914820\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.426914820\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 23 | \( 1 + T \) |
good | 3 | \( 1 - 1.93T + 3T^{2} \) |
| 7 | \( 1 - 2.38T + 7T^{2} \) |
| 11 | \( 1 - 5.33T + 11T^{2} \) |
| 13 | \( 1 + 4.53T + 13T^{2} \) |
| 17 | \( 1 - 1.81T + 17T^{2} \) |
| 19 | \( 1 - 7.00T + 19T^{2} \) |
| 29 | \( 1 + 0.118T + 29T^{2} \) |
| 31 | \( 1 + 0.884T + 31T^{2} \) |
| 37 | \( 1 - 7.51T + 37T^{2} \) |
| 41 | \( 1 + 1.45T + 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 - 10.4T + 47T^{2} \) |
| 53 | \( 1 + 9.42T + 53T^{2} \) |
| 59 | \( 1 - 7.79T + 59T^{2} \) |
| 61 | \( 1 + 2.80T + 61T^{2} \) |
| 67 | \( 1 + 3.11T + 67T^{2} \) |
| 71 | \( 1 + 13.5T + 71T^{2} \) |
| 73 | \( 1 - 12.4T + 73T^{2} \) |
| 79 | \( 1 - 6.80T + 79T^{2} \) |
| 83 | \( 1 + 13.5T + 83T^{2} \) |
| 89 | \( 1 - 2.89T + 89T^{2} \) |
| 97 | \( 1 + 1.97T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.624073166416929218142806112813, −9.364196042341883450923987413935, −8.319584502561792480925406173451, −7.69453233642056022132840443595, −7.02214193429609652346870075213, −5.64466548736045458414807965690, −4.55937800745570569845600153185, −3.66598182583261094374758980292, −2.66194863283604897180992559218, −1.36657923318264915751844559622,
1.36657923318264915751844559622, 2.66194863283604897180992559218, 3.66598182583261094374758980292, 4.55937800745570569845600153185, 5.64466548736045458414807965690, 7.02214193429609652346870075213, 7.69453233642056022132840443595, 8.319584502561792480925406173451, 9.364196042341883450923987413935, 9.624073166416929218142806112813