L(s) = 1 | − 3.36·3-s − 5-s − 1.90·7-s + 8.28·9-s − 5.48·11-s − 1.04·13-s + 3.36·15-s − 6.74·17-s − 1.55·19-s + 6.40·21-s − 23-s + 25-s − 17.7·27-s − 3.38·29-s + 10.9·31-s + 18.4·33-s + 1.90·35-s + 5.26·37-s + 3.52·39-s + 6.09·41-s − 8.28·45-s + 0.403·47-s − 3.36·49-s + 22.6·51-s + 5.88·53-s + 5.48·55-s + 5.20·57-s + ⋯ |
L(s) = 1 | − 1.93·3-s − 0.447·5-s − 0.720·7-s + 2.76·9-s − 1.65·11-s − 0.291·13-s + 0.867·15-s − 1.63·17-s − 0.355·19-s + 1.39·21-s − 0.208·23-s + 0.200·25-s − 3.42·27-s − 0.628·29-s + 1.96·31-s + 3.20·33-s + 0.322·35-s + 0.865·37-s + 0.564·39-s + 0.952·41-s − 1.23·45-s + 0.0589·47-s − 0.480·49-s + 3.17·51-s + 0.808·53-s + 0.738·55-s + 0.690·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3234521949\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3234521949\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 23 | \( 1 + T \) |
good | 3 | \( 1 + 3.36T + 3T^{2} \) |
| 7 | \( 1 + 1.90T + 7T^{2} \) |
| 11 | \( 1 + 5.48T + 11T^{2} \) |
| 13 | \( 1 + 1.04T + 13T^{2} \) |
| 17 | \( 1 + 6.74T + 17T^{2} \) |
| 19 | \( 1 + 1.55T + 19T^{2} \) |
| 29 | \( 1 + 3.38T + 29T^{2} \) |
| 31 | \( 1 - 10.9T + 31T^{2} \) |
| 37 | \( 1 - 5.26T + 37T^{2} \) |
| 41 | \( 1 - 6.09T + 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 - 0.403T + 47T^{2} \) |
| 53 | \( 1 - 5.88T + 53T^{2} \) |
| 59 | \( 1 - 9.60T + 59T^{2} \) |
| 61 | \( 1 + 7.09T + 61T^{2} \) |
| 67 | \( 1 - 13.7T + 67T^{2} \) |
| 71 | \( 1 - 0.478T + 71T^{2} \) |
| 73 | \( 1 - 2.40T + 73T^{2} \) |
| 79 | \( 1 + 4.24T + 79T^{2} \) |
| 83 | \( 1 + 11.2T + 83T^{2} \) |
| 89 | \( 1 - 4.90T + 89T^{2} \) |
| 97 | \( 1 + 12.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27905719461741572280548668029, −9.648342835124908143113543712282, −8.233672174855916789097740460902, −7.25058982593354846018010648792, −6.53570011021672983483158156984, −5.78435942644454397470998341229, −4.85908066039913024524844651517, −4.18747621777777804525866432690, −2.46885070526343660016953435920, −0.46866625083670960814790667256,
0.46866625083670960814790667256, 2.46885070526343660016953435920, 4.18747621777777804525866432690, 4.85908066039913024524844651517, 5.78435942644454397470998341229, 6.53570011021672983483158156984, 7.25058982593354846018010648792, 8.233672174855916789097740460902, 9.648342835124908143113543712282, 10.27905719461741572280548668029