L(s) = 1 | − 0.264·2-s + 2.90·3-s − 1.92·4-s + 1.43·5-s − 0.769·6-s + 1.03·8-s + 5.46·9-s − 0.379·10-s − 5.50·11-s − 5.61·12-s + 4.17·15-s + 3.58·16-s + 4.83·17-s − 1.44·18-s − 2.82·19-s − 2.76·20-s + 1.45·22-s − 5.99·23-s + 3.02·24-s − 2.94·25-s + 7.16·27-s + 1.04·29-s − 1.10·30-s − 9.20·31-s − 3.02·32-s − 16.0·33-s − 1.27·34-s + ⋯ |
L(s) = 1 | − 0.187·2-s + 1.67·3-s − 0.964·4-s + 0.641·5-s − 0.314·6-s + 0.367·8-s + 1.82·9-s − 0.120·10-s − 1.65·11-s − 1.62·12-s + 1.07·15-s + 0.896·16-s + 1.17·17-s − 0.340·18-s − 0.647·19-s − 0.619·20-s + 0.310·22-s − 1.25·23-s + 0.617·24-s − 0.588·25-s + 1.37·27-s + 0.193·29-s − 0.201·30-s − 1.65·31-s − 0.535·32-s − 2.78·33-s − 0.219·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 0.264T + 2T^{2} \) |
| 3 | \( 1 - 2.90T + 3T^{2} \) |
| 5 | \( 1 - 1.43T + 5T^{2} \) |
| 11 | \( 1 + 5.50T + 11T^{2} \) |
| 17 | \( 1 - 4.83T + 17T^{2} \) |
| 19 | \( 1 + 2.82T + 19T^{2} \) |
| 23 | \( 1 + 5.99T + 23T^{2} \) |
| 29 | \( 1 - 1.04T + 29T^{2} \) |
| 31 | \( 1 + 9.20T + 31T^{2} \) |
| 37 | \( 1 + 0.612T + 37T^{2} \) |
| 41 | \( 1 - 10.6T + 41T^{2} \) |
| 43 | \( 1 + 8.43T + 43T^{2} \) |
| 47 | \( 1 + 2.40T + 47T^{2} \) |
| 53 | \( 1 + 1.82T + 53T^{2} \) |
| 59 | \( 1 - 0.870T + 59T^{2} \) |
| 61 | \( 1 + 3.33T + 61T^{2} \) |
| 67 | \( 1 - 6.62T + 67T^{2} \) |
| 71 | \( 1 - 6.85T + 71T^{2} \) |
| 73 | \( 1 + 3.14T + 73T^{2} \) |
| 79 | \( 1 + 17.5T + 79T^{2} \) |
| 83 | \( 1 + 11.4T + 83T^{2} \) |
| 89 | \( 1 - 0.995T + 89T^{2} \) |
| 97 | \( 1 + 13.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.81879424862066911328568411318, −7.17838972166758062954144895664, −5.84150715936045504095475951081, −5.42288236288503782734889492291, −4.46028027826258553038295861439, −3.77049180114536768141144197617, −3.05611024211759571866284408047, −2.26041625959125089347088584327, −1.54946450792298844460592020265, 0,
1.54946450792298844460592020265, 2.26041625959125089347088584327, 3.05611024211759571866284408047, 3.77049180114536768141144197617, 4.46028027826258553038295861439, 5.42288236288503782734889492291, 5.84150715936045504095475951081, 7.17838972166758062954144895664, 7.81879424862066911328568411318