L(s) = 1 | + 1.17·2-s − 3.35·3-s − 0.616·4-s + 3.14·5-s − 3.94·6-s − 3.07·8-s + 8.22·9-s + 3.70·10-s + 0.773·11-s + 2.06·12-s − 10.5·15-s − 2.38·16-s + 5.75·17-s + 9.67·18-s − 1.22·19-s − 1.94·20-s + 0.909·22-s − 2.99·23-s + 10.3·24-s + 4.91·25-s − 17.5·27-s − 2.46·29-s − 12.4·30-s − 6.13·31-s + 3.34·32-s − 2.59·33-s + 6.76·34-s + ⋯ |
L(s) = 1 | + 0.831·2-s − 1.93·3-s − 0.308·4-s + 1.40·5-s − 1.60·6-s − 1.08·8-s + 2.74·9-s + 1.17·10-s + 0.233·11-s + 0.596·12-s − 2.72·15-s − 0.596·16-s + 1.39·17-s + 2.28·18-s − 0.280·19-s − 0.434·20-s + 0.193·22-s − 0.623·23-s + 2.10·24-s + 0.982·25-s − 3.37·27-s − 0.458·29-s − 2.26·30-s − 1.10·31-s + 0.591·32-s − 0.451·33-s + 1.16·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - 1.17T + 2T^{2} \) |
| 3 | \( 1 + 3.35T + 3T^{2} \) |
| 5 | \( 1 - 3.14T + 5T^{2} \) |
| 11 | \( 1 - 0.773T + 11T^{2} \) |
| 17 | \( 1 - 5.75T + 17T^{2} \) |
| 19 | \( 1 + 1.22T + 19T^{2} \) |
| 23 | \( 1 + 2.99T + 23T^{2} \) |
| 29 | \( 1 + 2.46T + 29T^{2} \) |
| 31 | \( 1 + 6.13T + 31T^{2} \) |
| 37 | \( 1 + 4.99T + 37T^{2} \) |
| 41 | \( 1 + 2.55T + 41T^{2} \) |
| 43 | \( 1 + 2.73T + 43T^{2} \) |
| 47 | \( 1 - 5.37T + 47T^{2} \) |
| 53 | \( 1 + 9.79T + 53T^{2} \) |
| 59 | \( 1 - 2.50T + 59T^{2} \) |
| 61 | \( 1 - 10.9T + 61T^{2} \) |
| 67 | \( 1 + 4.32T + 67T^{2} \) |
| 71 | \( 1 + 10.6T + 71T^{2} \) |
| 73 | \( 1 + 5.17T + 73T^{2} \) |
| 79 | \( 1 + 0.542T + 79T^{2} \) |
| 83 | \( 1 - 15.2T + 83T^{2} \) |
| 89 | \( 1 - 9.23T + 89T^{2} \) |
| 97 | \( 1 + 1.26T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.00070074436698794317828778370, −6.39278249640893091980762393218, −5.78858669918976810484169770389, −5.48544852027755356388438255244, −4.99790631338774890550421047273, −4.15305778171623049993094416397, −3.40775457683444452062542323690, −2.01302536024995427156788984967, −1.20019877358643508535895432538, 0,
1.20019877358643508535895432538, 2.01302536024995427156788984967, 3.40775457683444452062542323690, 4.15305778171623049993094416397, 4.99790631338774890550421047273, 5.48544852027755356388438255244, 5.78858669918976810484169770389, 6.39278249640893091980762393218, 7.00070074436698794317828778370